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Individualized Decision Making

Personalized dose finding: Developing an individualized dose level for pa-
tients to optimize expected clinical outcomes of interest [Medicine];
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Individualized Decision Making

Dynamic pricing: Offering customized incentives/pricing strategy to increase
sales and level of engagement [Economics];
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Motivation

Consider a decision making problem in a continuous treatment domain:
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Motivation

Decision 1: a simple decision rule/policy that always assigns individuals to
a fixed best treatment option.
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Motivation

Decision 2: an individualized decision rule/policy that assigns individuals
with treatments according to their features.
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Motivation

Prior to adopting any decision rule in practice, it is crucial to know the
impact of implementing such a rule.
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Decision Rule 2

Better?

Cai, H., Shi, C., Lu, W., Song, R. Deep Jump Learning NeurIPS 2021 3 / 17



Motivation

It is risky to apply a treatment decision rule or policy online to estimate its
mean outcome. Policy evaluation proposes to use the offline data from a
different historical rule.
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Statistical Framework

• Offline Data: Oi = (Xi, Ai, Yi), i = 1, · · · , n;
I Xi ∈ X : p-dimensional features.
I Ai ∈ A: received continuous treatment. w.l.o.g., set A = [0, 1].
I Yi: outcome of interest, the larger the better.

• A decision rule or policy π(X) : X → A.

• Propensity score / behavior policy: b(•|x) is the probability density
function of A given X = x that generates the observed data.

• Assume stable unit treatment value assumption (SUTVA), no
unmeasured confounders, and the positivity.

• Value: V (π) = E[Q{X,π(X)}] with Q(x, a) = E(Y |X = x,A = a).

• Goal: estimate the value V (π) given any target policy π based on the
observed data.
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Related Works

• Most of current works on personalized decision making focus on
policy optimization not policy evaluation;

I See e.g.,Chakraborty et al. (2010), Song et al. (2015), Shi et al. (2018).

• Majority of offline policy evaluation methods focus on binary/finite
treatment options.

I See e.g., Wang et al. (2012), Zhang et al. (2012), Chakraborty et al.
(2014), Luedtke and Van Der Laan (2016).

• A doubly robust (DR) estimator of V (π) for discrete treatments (see
e.g., Zhang et al. 2012):

1

n

n∑
i=1

[
Q̂{Xi, π(Xi)}+

I{Ai = π(Xi)}
b̂(Ai|Xi)

{Yi − Q̂(Xi, Ai)}

]
,

where I(•) denotes the indicator function, Q̂ and b̂ denote some
estimators for the Q-function and the propensity score function.
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Related Works

• Available methods for continuous treatments rely on the use of a
kernel function. A DR estimator of V (π) for continuous treatments
(see e.g., Kallus and Zhou 2018, Colangelo and Lee 2020):

1

n

n∑
i=1

[
Q̂{Xi, π(Xi)}+

K{Ai−π(Xi)
h }

b̂(Ai|Xi)
{Yi − Q̂(Xi, Ai)}

]
,

where K(·) is a kernel function and h is the kernel bandwidth.
• Limitation 1: Require the mean outcome to be smooth over the

treatment space;
I In dynamic pricing, the expected demand for a product has jump

discontinuities as a function of the charged price (den Boer and Keskin
2020).

• Limitation 2: Use a single bandwidth parameter, which may be
sub-optimal;

I when the second-order derivative of the conditional mean function has
an abrupt change in the treatment space.
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Summary of Our Work

• Propose deep jump evaluation method for continuous treatments by
integrating multi-scale change point detection, deep learning,
and the doubly-robust value estimators in discrete domains;

• Our method does not require kernel bandwidth selection, by
adaptively discretizing the treatment space using deep discretization;

• Our method has a better convergence rate, allowing the conditional
mean outcome to be either a continuous or piecewise function of the
treatment.
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Toy Example

Consider a smooth function Q(x, a) = 10max(a2 − 0.25, 0) log(x+ 2) for
any x, a ∈ [0, 1]: with different patterns when the treatment belongs to
different intervals:

• For a ∈ [0, 0.5], Q(x, a) is constant as a function of a.

• For a ∈ (0.5, 1], Q(x, a) depends quadratically in a.
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Sub-optimality of Kernel-Based Method in Toy Example

Target policy: π(x) = x; the value V (π) = V (1)(π) + V (2)(π) where

• V (1)(π) = E[Q{X,π(X)}I{π(X) ≤ 0.5}];
• V (2)(π) = E[Q{X,π(X)}I{π(X) > 0.5}].

Bias (SD) Indicator Kernel with h = 0.4 Kernel with h = 1

V (1)(π) I{π(X) ≤ 0.5} 0.50 (0.08) 0.40 (0.05)

V (2)(π) I{π(X) > 0.5} 0.16 (0.20) 1.09 (0.09)

Due to the use of a single bandwidth, the kernel-based estimator suffers
from either a large bias or a large variance.

• By Theorem 1 of Kallus and Zhou (2018), the leading term of bias:

h2
∫
u2K(u)du

2
E

{
∂2Q(X, a)

∂a2

∣∣∣∣
a=π(X)

}
.
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Motivation from Toy Example: Adaptive Discretization

Bias (SD) Indicator Deep Jump Learning Kernel with h = 0.4 Kernel with h = 1

V (1)(π) I{π(X) ≤ 0.5} 0.31 (0.06) 0.50 (0.08) 0.40 (0.05)

V (2)(π) I{π(X) > 0.5} 0.09 (0.19) 0.16 (0.20) 1.09 (0.09)
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Deep Jump Evaluation

Deep jump evaluation integrates multi-scale change point detection,
deep learning, and the doubly-robust value estimators in discrete
domains.

0

1

2

Y

A B C D

Dose

A B C D

Offline Data
by historical 

rule

Evaluate
New Rule

Deep jump evaluation works for both Model I and Model II:

Model I: Piecewise function: Q(x, a) =
∑
I∈D0

{qI,0(x)I(a ∈ I)}, for
some partition D0 of [0, 1] and a collection of functions {qI,0}I∈D0 .

Model II: Continuous function: Q is a continuous function of a and x.
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Step 1: Deep Discretization

• Divide the treatment space A into m disjoint initial intervals
[0, 1/m), [1/m, 2/m), . . . , [(m− 1)/m, 1].

• Define B(m) as the set of candidate discretizations D so each interval
I ∈ D corresponds to a union of some of the m initial intervals.

• Each discretization D ∈ B(m) is associated with a set of functions
{qI}I∈D, which depend on features, but not on the treatment.

• Model these qI in some function class of deep neural networks QI , to
capture the complex dependence between the outcome and features.

• Estimate Discretization by:(
D̂, {q̂I : I ∈ D̂}

)
= argmin

(D∈B(m),{qI∈QI :I∈D})(∑
I∈D

[
1

n

n∑
i=1

I(Ai ∈ I)
{
Yi − qI(Xi)

}2]
+ γn|D|

)
,

for some regularization parameter γn.
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• Each discretization D ∈ B(m) is associated with a set of functions
{qI}I∈D, which depend on features, but not on the treatment.

• Model these qI in some function class of deep neural networks QI , to
capture the complex dependence between the outcome and features.

• Estimate Discretization by:(
D̂, {q̂I : I ∈ D̂}

)
= argmin

(D∈B(m),{qI∈QI :I∈D})(∑
I∈D

[
1

n

n∑
i=1

I(Ai ∈ I)
{
Yi − qI(Xi)

}2]
+ γn|D|

)
,

for some regularization parameter γn.
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Step 2: Policy Evaluation

Doubly Robust Estimator under Deep Jump Evaluation

Given D̂ and {q̂I : I ∈ D̂}, the value for any decision rule of interest π is

V̂ (π) =
1

n

∑
I∈D̂

n∑
i=1

(
I{π(Xi) ∈ I}

[
I(Ai ∈ I)
b̂I(Xi)

{
Yi − q̂I(Xi)

}
+ q̂I(Xi)

])
,

where b̂I(x) is some estimator of the generalized propensity score function
Pr(A ∈ I|X = x).

The complete algorithm consists of:

• Data Splitting: use different subsets of data samples to estimate the
discretization and to construct the value estimator.

• Deep Discretization: apply pruned exact linear time method (Killick et
al., 2012) in multi-scale change point detection.

• Cross-fitting: to remove the bias induced by overfitting.
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Convergence Rates

Theorem 1 (under Model 1 (Piecewise Function))

Suppose m is proportional to n and {γn}n∈N satisfies γn → 0 and
γn � n−ε for some ε > −2β/(2β+ p) for β-smoothness. Then, there exist
some classes of deep neural networks such that for any decision rule π,

V̂ (π) = V (π) +Op{n−2β/(2β+p) log8 n}+Op(n
−1/2).

Theorem 2 (under Model 2 (Continuous Function))

Suppose m is proportional to n and γn is proportional to
max{n−3/5, n−2β/(2β+p) log9 n}. Then for any decision rule π,

V̂ (π)− V (π) = Op(n
−1/5) +Op{n−2β/(6β+3p) log3 n}.
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Real Data Analysis: Warfarin Dosing

• p = 81 baseline covariates X.

• Continuous Treatment A: the dose of Warfarin, converted into [0, 1].

• Outcome of interest Y : is defined as the absolute distance between
the international normalized ratio (INR, a measurement of the time it
takes for the blood to clot) after the treatment and the ideal value
2.5, i.e, Y = −|INR− 2.5|.

• The goal is to evaluate the value function under a decision rule of
interest offline, based on the Warfarin dataset.
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Implementation and Results

• Decision rule of interest: the optimal decision rule π?(X);

• Benchmarks (kernel-based methods): Kallus & Zhou (2018),
SLOPE (Su et al. 2020), Colangelo & Lee (2020).

Table 1: The bias, the standard deviation, and the mean squared error of the
estimated values under the optimal decision rule via the proposed deep jump
Evaluation and two kernel-based methods for the Warfarin data.

Methods Bias Standard deviation Mean squared error

Deep Jump Evaluation 0.259 0.416 0.240

SLOPE (Su et al. 2020) 0.611 0.755 0.943

Kallus & Zhou (2018) 0.662 0.742 0.989

Colangelo & Lee (2020) 0.442 1.164 1.550
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Thank You!
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