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Motivation

Consider a decision making problem to assign individuals with appropriate
treatment options:

A B C D 

Treat 1 

Treat 0 
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Motivation

The näıve decision rule is always assigning individuals to a fixed best treat-
ment option:

A B C D 

Treat 1 

Treat 0 

Be#er! 

Naïve	Rule 
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Motivation

Due to individuals’ heterogeneity in outcome to different treatment options,
there may not exist a unified best decision.

A B C D 
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Motivation

The optimal individualized decision rule (ODR) is to assign individuals with
the best treatment option according to their covariates.

A B C D 

A B C D 

Treat 1 

Treat 0 

Be#er! 

Naïve	Rule 

Op,mal	Rule 
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Motivation

However, no testing procedure is proposed to verify whether these ODRs
are significantly better than the näıve decision rule.

A B C D 

A B C D 

Treat 1 

Treat 0 

Be#er! Be#er? 

Naïve	Rule 

Op,mal	Rule 
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Overview

• Frame a testing procedure for detecting the existence of an ODR that
is better than the näıve decision rule under the randomized trials.

• Construct the test statistic based on the value difference using the
augmented inverse probability weighted (AIPW) method.

• Establish asymptotic distributions of the test statistic, and develop
its associated sample size calculation formula.

• Simulations and a real data application to a schizophrenia clinical trial
data to demonstrate the empirical validity of the proposed method.
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Statistical Framework

• Baseline covariates X is p× 1 vector;

• Treatment A takes 0 or 1 as two treatment options;

• Consider a randomized trial, where the propensity score
π = P (A = 1) as the likelihood of assignment is known as constant;

• Outcome of interest Y ;

• Potential outcomes Y ?(0) and Y ?(1) are the outcomes that would be
observed if a subject receiving treatment 0 or 1, respectively;

• A decision rule is a deterministic function d(·) that maps X to {0, 1},
relying on a parameter β as d(X,β) = I{g(X)>β > 0}

• Value function under d(X,β) is V (β) = E{Y ?(d(X,β))}, where
Y ∗(d) = Y ∗(0){1− d(X,β)}+ Y ∗(1)d(X,β) is the potential
outcome under d(·) that would be observed if an individual had
received a treatment according to d(·).
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Optimal Decision Rule and Näıve Decision Rule

• Optimal decision rule (ODR) of interest: d(X,β0), where
β0 = arg max||β||=1 V (β);

• Value function under the ODR d(X,β0) is V (β0);

• Näıve decision rule: d(X,β) ≡ 1 and d(X,β) ≡ 0;

• Values under the two näıve decision rules: V1 and V0, respectively.

• Assume treatment 1 is no worse than treatment 0 on average, i.e.
V1 ≥ V0 (easily validated by a two-sample t-test).

• Goal: test whether there exists an ODR that is better than the näıve
decision rule in terms of value.

Null and Alternative Hypotheses:

H0 : V (β0) = V1 vs. Ha : V (β0) > V1. (1)
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Value Estimator under ODR and Näıve Decision Rule

AIPW Estimator for V (β) under d(X, β) (Zhang et al., 2012)

V̂ (β) =
1

n

n∑
i=1

I{Ai = d(Xi, β)}
πAi + (1− π)(1−Ai)

{Yi − µ̂(Xi, β)}+ µ̂(Xi, β),

where µ̂(X,β) is an estimator for µ(X,β) ≡ E{Y |A = d(X,β), X}.

• Estimated ODR: d(X, β̂), where β̂ = arg max||β||=1 V̂ (β) (obtained
by the direct value search through a global optimization algorithm);

• Estimated value under the estimated ODR for V (β0): V̂ (β̂);

• Estimated value for V1 under the näıve decision rule d(X) ≡ 1:

V̂ 1 =
1

n

n∑
i=1

Ai
π
{Yi − µ̂1(Xi)}+ µ̂1(Xi),

where µ̂1(X) is an estimator for µ1(X) ≡ E(Y |A = 1, X).
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Test Statistics: Value Difference under Two Rules

• A natural test statistic:
√
n{V̂ (β̂)− V̂ 1}.

• Degenerate challenge: asymptotic distribution of
√
n{V̂ (β̂)− V̂ 1}

converges in distribution to 0 under the null with regular assumption;

• Modified estimator for V1:

V̂1 =
1

n

n∑
i=1

AiYi
π

,

known as the inverse probability weighted (IPW) estimator of the
value function under the näıve decision rule.

• Test statistic: (Keep Efficiency of AIPW + Overcome Degeneration)

∆̂n =
√
n{V̂ (β̂)− V̂1}

=
1√
n

n∑
i=1

[
I{Ai = d(Xi, β̂)}

πAi + (1− π)(1−Ai)
{Yi − µ̂(Xi, β̂)}+ µ̂(Xi, β̂)− AiYi

π

]
.
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Asymptotic Distribution of ∆̂n under Null

Theorem 1

Under H0, ∆̂n converges in distribution to a normal random variable with
mean 0 and variance

σ20 =
1− π
π

V ar{E(Y |A = 1, X)}, as n→∞.

Remark:

• σ20 can be consistently estimated by σ̂20 = 1−π
π V̂ ar{µ̂1(X)}.

• At level α, reject the null hypothesis when ∆̂n/σ̂0 ≥ zα, where zα is
an upper α-quantile of the standard normal distribution.

• A two-sided 1− α confidence interval (CI) for the difference
V (β0)− V1 under the null: V̂ (β̂)− V̂1 ± zα/2σ̂0/

√
n.
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Asymptotic Distribution of ∆̂n under local alternative

Theorem 2

Under Ha,n : V (β0) = V1 + ∆/
√
n, where ∆ > 0, we have

∆̂n = ∆ +
1√
n

n∑
i=1

φi + op(1), where

φi = I{Ai=d(Xi,β0)}
πAi+(1−π)(1−Ai)

{Yi−µ(Xi, β0)}+µ(Xi, β0)−V (β0)−
(
Ai
π Yi−V1

)
.

It follows that ∆̂ converges in distribution to a random variable with mean
∆ and variance σ2φ = E(φ2i ).

Remark:

• σ2φ can be consistently estimated by σ̂2φ = n−1
∑n

i=1 φ̂
2
i , where

φ̂i = I{Ai=d(Xi,β̂)}
πAi+(1−π)(1−Ai)

{Yi−µ̂(Xi, β̂)}+µ̂(Xi, β̂)−V̂ (β̂)−
(
Ai
π Yi−V̂1

)
.
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Sample Size Calculation

Detect a pre-specified important difference δa = V (β0)− V1 with a
desired power at least 1− β for a one-sided level-α test:

Set 1− Φ{(zασ̂0 −∆)/σ̂φ} = 1− β, the required sample size as follows

n? =
(Zασ0 + Zβσφ)2

δ2a
. (2)

Remark:

• In practice, based on a pilot study data, obtain the estimated value
difference δ̂a, and the variance estimates σ̂20 and σ̂2φ.

• Estimated sample size n̂?:

n̂? =
(Zασ̂0 + Zβσ̂φ)2

δ̂2a
. (3)
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Real Data Analysis: Schizophrenia Dataset

• A randomized trial to examine the effectiveness of
cognitive-behavioral therapy for schizophrenia, measured by the
Positive and Negative Syndrome Scale (PANSS);

• Covariates X = (X1, X2): X1 is the log duration of untreated
psychosis at baseline, and X2 is the PANSS score at the baseline visit.

• Treatment A:
I Treatment as usual (TAU) (n0 = 70);
I Cognitive-behavioral plus TAU (CBT) (n1 = 44);
I Supportive counseling plus TAU (SC) (n2 = 41);

• Outcome of interest Y : reduction of PANSS score.
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Implementation and Results

• The proposed test is conducted for comparing two treatments at a
time: CBT vs. TAU, SC vs. TAU, and CBT vs. SC;

• Treatment-specific means to decide the superior treatment as
treatment 1: µ̂TAU = 21.96, µ̂CBT = 27.34 and µ̂SC = 28.76.

Test Pair CBT vs. TAU SC vs. TAU CBT vs. SC

superior CBT SC SC

V̂1 27.34 28.76 28.76

V̂ (β̂) 30.35 33.06 34.70
P -value 0.190 0.125 0.039
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Reject Null for Testing Pair: CBT vs. SC

• Individuals with median log durations and median PANSS score: CBT;

• Patients with extreme low or high log durations and PANSS score: SC;

• Consider one-sided test with α = 0.05 and a desired power at least 1− β = 90%,
the required sample size to detect a value difference δ̂a = V̂ (β̂)− V̂1 is n̂? = 290.
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Figure 1: Treatment assignment under the estimated optimal decision rule.
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Contribution

Our proposed testing procedure for detecting the existence of an ODR:

• is a cutting edge work to the personalized recommendation;

• is first work that forms the hypothesis testing by proposing the
non-degenerate value difference of AIPWEs as the test statistic;

• has novel yet effective sample size calculation method, which
contributes to the policy evaluation literature from a unique angle.

• has clear instruction on the validation of a personalized optimal
decision making, which has great potential towards developing an
automatic decision-making system that is capable of
filtering ineffective rules and planning the ODR.
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decision making, which has great potential towards developing an
automatic decision-making system that is capable of
filtering ineffective rules and planning the ODR.

Cai, H., Lu, W., Song, R. (NCSU) On Validation and Planning of ODR June 11, 2020 14 / 15



Contribution

Our proposed testing procedure for detecting the existence of an ODR:

• is a cutting edge work to the personalized recommendation;

• is first work that forms the hypothesis testing by proposing the
non-degenerate value difference of AIPWEs as the test statistic;

• has novel yet effective sample size calculation method, which
contributes to the policy evaluation literature from a unique angle.

• has clear instruction on the validation of a personalized optimal
decision making, which has great potential towards developing an
automatic decision-making system that is capable of
filtering ineffective rules and planning the ODR.

Cai, H., Lu, W., Song, R. (NCSU) On Validation and Planning of ODR June 11, 2020 14 / 15



Contribution

Our proposed testing procedure for detecting the existence of an ODR:

• is a cutting edge work to the personalized recommendation;

• is first work that forms the hypothesis testing by proposing the
non-degenerate value difference of AIPWEs as the test statistic;

• has novel yet effective sample size calculation method, which
contributes to the policy evaluation literature from a unique angle.

• has clear instruction on the validation of a personalized optimal
decision making, which has great potential towards developing an
automatic decision-making system that is capable of
filtering ineffective rules and planning the ODR.

Cai, H., Lu, W., Song, R. (NCSU) On Validation and Planning of ODR June 11, 2020 14 / 15



Thank You!
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