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Motivation

Consider a decision making problem to assign individuals with appropriate
treatment options in a continuous domain:
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Motivation

An illustration of a simple decision rule that always assigns individuals to a
fixed best treatment option:
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Motivation

Due to individuals’ heterogeneity in outcome to different treatment options,
there may not exist a unified best treatment.
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Motivation

An individualized decision rule (IDR) is to assign individuals with a treatment
option according to their baseline covariates.
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Motivation

Prior to adopting any decision rule in practice, it is crucial to know the
impact of implementing such a rule.
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Motivation

It is risky to apply an IDR online to estimate its mean outcome. Policy
evaluation proposes to use the offline data from a different historical rule.
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Statistical Framework

• Baseline covariates X ∈ X is p× 1 vector;

• Treatment A belongs to a continuous bounded space, say A = [0, 1];

• Outcome of interest Y , the larger the better by convention;

• Observed Offline Dataset {(Xi, Ai, Yi)}1≤i≤n where n is sample size;

• A decision rule π(•) is a deterministic function that maps X to A.

• Propensity score / behavior policy b(•|x) is the probability density
function of A given X = x that generates the observed data.

• Q-function the expected outcome function conditional on the
feature-treatment pair: Q(x, a) = E(Y |X = x,A = a).

• Under SUTVA, no unmeasured confounders, and the positivity
assumptions, for a decision rule π of interest, its value is
V (π) = E[Q{X,π(X)}].

• Our goal is to estimate the value V (π) based on the observed data.
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Policy Evaluation

• Most of current works on personalized decision making focus on
policy optimization not policy evaluation;

• Less attention has been paid to the continuous treatment setting.

• Available methods rely on the use of a kernel function, and suffer
from three limitations.

• I Kallus & Zhou (2018), Colangelo & Lee (2020):

1

n

n∑
i=1

[
Q̂{Xi, π(Xi)}+

K{Ai−π(Xi)
h }

b̂(Ai|Xi)
{Yi − Q̂(Xi, Ai)}

]
.

I Require the mean outcome to be smooth over the treatment space;
I Sensitive to the choice of the bandwidth parameter;
I Use a single bandwidth parameter, which may be sub-optimal.
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Toy Example: Adaptive Discretization

Figure 1: Left panel: the oracle Q-function on the feature-treatment space for the
toy example. Right panel: the green curve presents the oracle Q-function
Q{x, π(x)} under decision rule π(x) = x in the toy example; and the red curve is
the fitted mean value by the deep jump Q-evaluation and the pink dash line
corresponds to the 95% confidence bound.
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Deep Jump Q-Evaluation
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Figure 2: Left: example of piece-wise constant function. Middle: illustration of a
deep neural network. Right: demonstration of policy evaluation.

Model 1: Piecewise function: Q(x, a) =
∑
I∈D0

{qI,0(x)I(a ∈ I)}, for
some partition D0 of [0, 1] and a collection of functions {qI,0}I∈D0 .

Model 2: Continuous function: Q is a continuous function of a and x.
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Deep Discretization

• Divide the treatment space A into m disjoint initial intervals
[0, 1/m), [1/m, 2/m), . . . , [(m− 1)/m, 1].

• Define B(m) as the set of candidate discretizations D so each interval
I ∈ D corresponds to a union of some of the m initial intervals.

• Each discretization D ∈ B(m) is associated with a set of functions
{qI}I∈D, which depend on features, but not on the treatment.

• Model these qI in some function class of deep neural networks QI , to
capture the complex dependence between the outcome and features.

• Estimate Discretization by:(
D̂, {q̂I : I ∈ D̂}

)
= argmin

(D∈B(m),{qI∈QI :I∈D})(∑
I∈D

[
1

n

n∑
i=1

I(Ai ∈ I)
{
Yi − qI(Xi)

}2]
+ γn|D|

)
,

for some regularization parameter γn.
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Deep Jump Q-Evaluation

Doubly Robust Estimator under Deep Jump Q-Evaluation

Given D̂ and {q̂I : I ∈ D̂}, the value for any decision rule of interest π is

V̂ (π) =
1

n

∑
I∈D̂

n∑
i=1

(
I{π(Xi) ∈ I}

[
I(Ai ∈ I)
b̂I(Xi)

{
Yi − q̂I(Xi)

}
+ q̂I(Xi)

])
,

where b̂I(x) is some estimator of the generalized propensity score function
Pr(A ∈ I|X = x).

The complete algorithm consists of:

• Data Splitting: use different subsets of data samples to estimate the
discretization and to construct the value estimator.

• Deep Discretization: apply pruned exact linear time method (Killick et
al., 2012) in multi-scale change point detection.

• Cross-fitting: to remove the bias induced by overfitting.

Cai, H., Shi, C., Lu, W., Song, R. Deep Jump Q-Evaluation ENAR 2021 Spring Meeting 8 / 13



Deep Jump Q-Evaluation

Doubly Robust Estimator under Deep Jump Q-Evaluation

Given D̂ and {q̂I : I ∈ D̂}, the value for any decision rule of interest π is

V̂ (π) =
1

n

∑
I∈D̂

n∑
i=1

(
I{π(Xi) ∈ I}

[
I(Ai ∈ I)
b̂I(Xi)

{
Yi − q̂I(Xi)

}
+ q̂I(Xi)

])
,

where b̂I(x) is some estimator of the generalized propensity score function
Pr(A ∈ I|X = x).

The complete algorithm consists of:

• Data Splitting: use different subsets of data samples to estimate the
discretization and to construct the value estimator.

• Deep Discretization: apply pruned exact linear time method (Killick et
al., 2012) in multi-scale change point detection.

• Cross-fitting: to remove the bias induced by overfitting.

Cai, H., Shi, C., Lu, W., Song, R. Deep Jump Q-Evaluation ENAR 2021 Spring Meeting 8 / 13



Deep Jump Q-Evaluation

Doubly Robust Estimator under Deep Jump Q-Evaluation

Given D̂ and {q̂I : I ∈ D̂}, the value for any decision rule of interest π is

V̂ (π) =
1

n

∑
I∈D̂

n∑
i=1

(
I{π(Xi) ∈ I}

[
I(Ai ∈ I)
b̂I(Xi)

{
Yi − q̂I(Xi)

}
+ q̂I(Xi)

])
,

where b̂I(x) is some estimator of the generalized propensity score function
Pr(A ∈ I|X = x).

The complete algorithm consists of:

• Data Splitting: use different subsets of data samples to estimate the
discretization and to construct the value estimator.

• Deep Discretization: apply pruned exact linear time method (Killick et
al., 2012) in multi-scale change point detection.

• Cross-fitting: to remove the bias induced by overfitting.

Cai, H., Shi, C., Lu, W., Song, R. Deep Jump Q-Evaluation ENAR 2021 Spring Meeting 8 / 13



Convergence Rates

Theorem 1 (under Model 1 (Piecewise Function))

Suppose m is proportional to n and {γn}n∈N satisfies γn → 0 and
γn � n−ε for some ε > −2β/(2β+ p) for β-smoothness. Then, there exist
some classes of deep neural networks such that for any decision rule π,

V̂ (π) = V (π) +Op{n−2β/(2β+p) log8 n}+Op(n
−1/2).

Theorem 2 (under Model 2 (Continuous Function))

Suppose m is proportional to n and γn is proportional to
max{n−3/5, n−2β/(2β+p) log9 n}. Then for any decision rule π,

V̂ (π)− V (π) = Op(n
−1/5) +Op{n−2β/(6β+3p) log3 n}.
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Real Data Analysis: Warfarin Dosing

• p = 81 baseline covariates X.

• Continuous Treatment A: the dose of Warfarin, converted into [0, 1].

• Outcome of interest Y : is defined as the absolute distance between
the international normalized ratio (INR, a measurement of the time it
takes for the blood to clot) after the treatment and the ideal value
2.5, i.e, Y = −|INR− 2.5|.

• The goal is to evaluate the value function under a decision rule of
interest offline, based on the Warfarin dataset.
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Implementation and Results

• Decision rule of interest: the optimal decision rule π?(X);

• Benchmarks (kernel-based methods): Kallus & Zhou (2018),
Colangelo & Lee (2020).

Table 1: The bias, the standard deviation, and the mean squared error of the
estimated values under the optimal decision rule via the proposed deep jump
Q-evaluation and two kernel-based methods for the Warfarin data.

Methods Bias Standard deviation Mean squared error

Deep Jump Q-Evaluation 0.259 0.416 0.240

Kallus & Zhou (2018) 0.662 0.742 0.989

Colangelo & Lee (2020) 0.442 1.164 1.550
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Contribution

Our deep jump Q-evaluation method for continuous treatments:

• integrates multi-scale change point detection, deep learning, and
the doubly-robust value estimators in discrete domains;

• does not require kernel bandwidth selection, by adaptively discretizing
the treatment space using deep discretization;

• has a better convergence rate for any decision rule of interest,
allowing the conditional mean outcome to be either a continuous or
piecewise function of the treatment.
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Thank You!
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