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Madrid Traffic Pollution
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Figure 1: Madrid traffic condition of different sensors across the city over time,
quantified by the nitric oxide level (NO, measured in µg/m3), that is a highly corrosive
gas produced by motor vehicles and fuel burning processes. Data source: Kaggle.

Question: How to identify locations of heaviest traffic over time, in case
that the sensors are not available?
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https://www.kaggle.com/decide-soluciones/air-quality-madrid/home


Modeling from the Madrid data

• By tracking NO level at different locations (i.e. actions) over time, a
rapidly changing environment can be observed with strong seasonality
(daily pattern in Madrid example).

• We encode the above environment that periodically repeats with
some non-stationary reward functions as periodic stationary.
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Seasonal Environment is General

In transport system

• Daily pattern in drivers (driver)/customer (demand) in ride-sharing;

• Weekday/weekend pattern traffic;

• Yearly pattern of airline traffic due to holiday / vacation season.

Motivation

Quite often, we have domain knowledge on seasonality. Our study aims to
leverage it in bandit modeling. Could we do better than considering them
as contextual variable?
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Continuum Action Space

In transport system

The decision space could be location in the map (continuous space).

• Lime decides where to place scooter/bike, and how many.

• Ride-sharing / taxi company guides drivers to high demand locations
in real time.

Solutions
• Discretization action space. Usually poor performance numerically

and high complexity.

• Gaussian Process (GP) - Upper Confidence Bound(UCB) (Srinivas
et al., 2009). GP is a Bayesian tool to approximate function over
continuous space.
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GP (Rasmussen, 2003)

Figure 2: Model reward function by GP.

GP Learning

Given prior f ∼ GP(0, k(x,x)), after observing (x, y)≤t, the posterior distribution of f
is a GP that f(x) ∼ N(µt(x),σ

2
t (x)):

µt(x) =k≤t(x)
>(K≤t + σ2It)

−1y≤t

σ2
t (x) =k(x,x)− k≤t(x)

>(K≤t + σ2It)
−1k≤t(x),

(1)

where k≤t(x) = [k(xi,x)]i≤t, and K≤t = [k(xi,xj)]i,j≤t.
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GP-UCB (Srinivas et al., 2009)

Figure 3: Left panel: choose the current best action that maximizes the upper
confidence bound of reward function; Right panel: observe the reward and update
the confidence bound.
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Periodic Bandit Framework

• Consider an environment with reward function f : X = A× T → R
over an (potentially infinite) action space A ⊂ Rd and time space
T = {1, 2, · · · }.
• At each time step t, we choose an action at ∈ A and receive an

immediate reward yt.

• Periodicity assumption: The reward function f has seasonal
property of a fixed known period τ :

f(a, t) = f(a, t mod τ) + εt, ∀a ∈ A, t = 1, 2, · · · . (2)

where ‖εt‖ � ‖f(·, t mod τ)‖.
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Periodic Gaussian Process (Periodic-GP)

• Model the periodic environment by a periodic kernel over time:

kT (t, t
′) = exp

[
− 2

l2T
sin2

(
π|t− t′|

τ

)]
, (3)

where lT is the length scale.

• With a kernel on the action space as kA(·, ·) : A → R, we define the
kernel function over X as:

k(x,x′) = k{(a, t), (a′, t′)} = kA(a,a
′)× kT (t, t′). (4)

• In our experiments, we apply the RBF Kernel on kA,

kA(a,a
′) = exp

(
−‖a− a

′‖2

2l2A

)
.
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Algorithm

Algorithm 1 Periodic GP-UCB

Require: a pre-specified τ ;
Require: hyper-parameters in GP kernels k(x,x′);

1: for t = 1, ..., T do
2: Update βt following specific rule (detail in paper);

3: at ← argmaxa∈A

[
µt−1(a, t) + β

− 1
2

t σt−1(a, t)

]
; . UCB

4: Receive reward yt;
5: Update GP posterior µt and σt based following (1).
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Regret Bound of Periodic-GP-UCB

Theorem 1

Let δ ∈ (0, 1) and τ is a fixed constant. Under some assumption over A and βt
(see Paper for detail), we have the regret bound for Periodic-GP-UCB as

O
(√

TβT γST

)
with probability at least 1− δ. Or equivalently, we have:

Pr

{
RT ≤

√
c3TβT γST + π2/6, ∀T ≥ 1

}
≥ 1− δ, (5)

where c3 = 8/ log(1 + σ−2).
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Experiments

Methods in Comparison
• GP-UCB Srinivas et al. (2009): stationary environment;

• C-GP-UCB Krause & Ong (2011): stationary environment with contextual
information;

• R-GP-UCB Bogunovic et al. (2016): non-stationary environment using resetting
techniques;

• TV-GP-UCB Bogunovic et al. (2016): non-stationary environment using decaying
techniques;

• Periodic-GP-UCB (ours): proposed method for periodic scenario.
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Synthetic Data
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Figure 4: The reward function under different actions over time for synthetic data.
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Result on Synthetic Data
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Figure 5: The mean cumulative regret over time under different methods for
synthetic data.
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Madrid Traffic Pollution
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Figure 6: Madrid traffic pollution dataset. Data source: Kaggle.
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https://www.kaggle.com/decide-soluciones/air-quality-madrid/home


Result on Madrid Data
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Figure 7: The cumulative regret under different methods for the Madrid traffic
pollution data.
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Thanks!
Q&A...
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