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Personalized Decision Making



Personalized Decision Making

Developing an individualized treatment rule for patients to optimize ex-
pected clinical outcomes of interest [Medicine];
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Personalized Decision Making

Offering customized incentives to increase sales and level of engagement
[Economics];
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Personalized Decision Making

Designing a personalized advertisement recommendation system to raise the
click rates [Marketing].
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General Setup for Personalized Decision Making

Consider assigning individuals with covariates X to some treatments A.

O1

Treat 1Treat 0 A

XO2 O3 O4
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General Setup for Personalized Decision Making

Treatments may be assigned randomly or following some clinical advices.

O1

Treat 1Treat 0 A

XO2 O3 O4
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General Setup for Personalized Decision Making

The outcome Y can be observed after A is given. Due to individuals’
heterogeneity in Y to different A, there may not exist a unified best decision.

O1

Treat 1Treat 0 A

XO2 O3 O4

Y

High Low

Cai, H. (NCSU) Oral Prelim Aug 27th, 2021 2 / 47



General Setup for Personalized Decision Making

The goal is to learn the optimal decision rule (ODR) that maximizes the
mean outcome from either randomized trials or observational studies.

O1

Treat 1Treat 0 A

XO2 O3 O4

Y

High Low

Optimal
Decision

Rule

Cai, H. (NCSU) Oral Prelim Aug 27th, 2021 2 / 47



General Setup for Personalized Decision Making

Using ODR, we aim to assign future individuals with the best treatment
option according to their covariates.

O1

Treat 1Treat 0 A

XO2 O3 O4

Y

High Low

Optimal
Decision

Rule

O1

Treat 1Treat 0

O2 O3 O4

High Low

Cai, H. (NCSU) Oral Prelim Aug 27th, 2021 2 / 47



Challenges (1): Policy Optimization in Continuous
Treatment Domains



Challenges (1): Policy Optimization in Continuous
Treatment Domains

• Personalized dose finding: derive a dose level or dose range for each
patient [Medicine];

• Dynamic pricing: assign each product an optimal price/discount
according to their characteristics [Economics].
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Motivating Example: Warfarin Dosing Problem

• Warfarin: oral anticoagulant for prevention of thrombosis and
thromboembolism;

• Over 30 million prescriptions in US, 2004;

• International Normalized Ratio (INR): measures the time it takes for
blood to clot.

• Normal range of INR: 0.8 - 1.2 for a healthy person not using
warfarin; targeted range: 2.0 - 3.0 for people on warfarin therapy.

• Dosage: 10mg to 100mg per week (Consortium 2009)

• Higher doses are more effective than lower doses, but may lead to a
higher risk of bleeding.

• Goal: find the individualized decision rule that gives the optimal dose
/ dose range to stabilize the INR for patients on warfarin therapy.
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Related Works

• Most ODR methods consider finite treatment options:
I Q-learning (Watkins & Dayan 1992, Chakraborty et al. 2010);
I A-learning (Murphy 2003, Shi et al. 2018);
I Direct value search (Zhang et al. 2012, 2013, Zhao et al. 2012, 2015).

• Existing methods for personalized dose finding:
I Parametric regression methods (Rich et al. 2014): consider a quadratic

interactions between dose and covariates.
I Discretize doses (Laber & Zhao 2015): Cluster patients into subgroups

and assign a dosage for each subgroup.
I Value search methods: O-learning (Chen et al. 2016) and

kernel-assisted learning (Zhu et al. 2020).

• A limitation: recommend one single dose level for each individual
patient, making it hard to implement in practice.
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Point Decision Rule v.s. Interval-valued Decision Rule

Individualized point decision rule recommends a certain dose level.
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Point Decision Rule v.s. Interval-valued Decision Rule

Drawback: difficult to implement and unrealistic (possibly infinite doses).
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Point Decision Rule v.s. Interval-valued Decision Rule

Given certain continuity of the mean outcome function, arbitrary dose within
a certain dose interval could achieve a nearly optimal efficacy.
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Point Decision Rule v.s. Interval-valued Decision Rule

Consider the mean outcome function as a piecewise constant function of
dose level given baseline covariates.
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Point Decision Rule v.s. Interval-valued Decision Rule

The optimal dose can be any point within the optimal range of dose level
that achieves the highest mean outcome.
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Point Decision Rule v.s. Interval-valued Decision Rule

Individualized interval-valued decision rule (I2DR) returns a range of treat-
ment levels based on individuals’ baseline information.
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Advantages of I2DR

• I2DR gives more options and is thus more flexible to implement in
practice.

I Arbitrary dose within the given dose interval could achieve the
same efficacy;

I Patients and clinicians could choose appropriate doses based on their
preference / medicine availability;

I Suggestions of interval-valued doses (see e.g., Rotschafer et al. 1982,
Kuruvilla & Gurk-Turner 2001).

• I2DR provides instructions for designing the medicine specification to
save cost on manufacturing dosage.
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Summary of Our Work

• The optimal I2DR recommends an optimal dose range instead of a
single optimal dose: more options, more flexible;

• Propose a jump interval-learning (JIL) based on parametric regression
(e.g. linear/dose-varying coefficient model) or nonparametric
regression (deep neural network model).

• Establish the consistency and convergence rate of the I2DR
estimators, and develop a procedure to infer the mean outcome (i.e.
the value) under the estimated optimal policy.
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Jump Interval-Learning for Individualized Decision
Making with Continuous Treatments



Recap: Problem Setting

• Data: (Xi, Ai, Yi), i = 1, · · · , n;
I Xi ∈ X : p-dimensional covariates.
I Ai ∈ [0, a0]: received dose. w.l.o.g., set a0 = 1.
I Yi: outcome of interest, the larger the better.

• Potential outcomes Y ∗(a), a ∈ [0, 1].

• I2DR d(X) : X ∈ X → I ⊂ [0, 1], where I is a subinterval in [0, 1].

• Value function: V (d) = E{Y ∗(d(X))}.
• Goal: find the optimal I2DR: dopt = arg maxd V (d).
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Assumptions

A1 Stable Unit Treatment Value Assumption (SUTVA):
Y =

∑
a Y
∗(a)I(A = a);

A2 No unmeasured confounders: {Y ∗(a) : a ∈ [0, 1]} ⊥ A | X;

A3 Positivity: there exists some constant c∗ > 0 such that p(a|x) ≥ c∗
for all x ∈ X and a ∈ [0, 1], where p(·|x) denotes the probability
density function of A conditional on X = x.

Let Q(x, a) = E(Y |X = x,A = a), under above assumptions, do we have

V (d) = E{Q(X, d(X))}?

No, since d(X) returns an interval.
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Value Function under I2DR

• Given a dose interval I, a dose is prescribed by a probability density
function π∗(a;x, I) such that

∫
I π
∗(a;x, I)da = 1.

• The value function under an I2DR d(·) is defined by

V π∗(d) = E

(∫
d(X)

Q(X, a)π∗(a;X, d(X))da

)
.

• Without knowing π∗, V π∗(d) may be difficult to estimate
nonparametrically.

• Even a nonparametric estimator of V π∗(d) is available, it remains
unknown how to efficiently compute the I2DR that maximizes the
estimated value.
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Working Model Assumptions

• Model I (Piecewise Functions).

Q(x, a) =
∑
I∈P0

qI,0(x)I(a ∈ I) ∀x ∈ X , a ∈ [0, 1]

I P0 is a finite partition of [0, 1], i.e. {[τ0, τ1), [τ1, τ2), . . . , [τK−1, τK ]}
for some 0 = τ0 < τ1 < τ2 < · · · < τK−1 < τK = 1.

I (qI,0)I∈P0 is collection of continuous functions.
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Working Model Assumptions

• Model II (Continuous Functions). Q(x, a) is a continuous function
of a and x, for any x ∈ X and a ∈ [0, 1].

I dose-varying coefficient model:

Q(x, a) = x̄Tβ0(a), ∀x ∈ X , a ∈ [0, 1].

I Q(x, a) is nonparametric, say a deep neural network model.
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Motivation by Model I

• Optimal I2DR:
dopt(x) = arg max

I∈P0

qI,0(x),

independent of the preference function π∗.

• Validation:

V π∗(dopt) = E
{∑
I∈P0

qI,0(X)I(dopt(X) ∈ I)
}
≥ V π∗(d),

for any rule d and preference function π∗. Denote V π∗(d) by V (d).

• Q: How to estimate P0 and qI,0(x)? Jump interval-learning, which
works for both Model I and Model II.
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Jump Interval-Learning

• Consider an initial partition P0,m of [0, 1]: {[τ0, τ1), . . . , [τm−1, τm]}
for some 0 = τ0 < τ1 < · · · < τm−1 < τm = 1. For example,
τk = k/m, and m can diverge with n.

• Adaptively determines the optimal partition P̂ based on
jump-penalized regression: each interval in P̂ corresponds to a union
of a set of consecutive intervals in P0,m.

• B(m) denote the set of all possible partitions P derived from P0,m.

• Associate to each partition P ∈ B(m) a collection of functions
{q(·; θI)}I∈P ∈

∏
I∈P QI for QI as some class of functions, where

θI is the underlying parameter associated to interval I.
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Jump Interval-Learning

Jump-Penalized Regression

(P̂, {q̂I : I ∈ P̂}) =

arg min
P∈B(m)

{q(·;θI)∈QI :I∈P}

{∑
I∈P

( 1

n

n∑
i=1

I(Ai ∈ I)
{
Yi − q(Xi; θI)

}2
+ λn|I|‖θI‖22

)
+ γn|P|

}
,

where |P| denote the number of intervals in P and |I| denote the length
of the interval I.

• γn|P|: control the total number of jumps (i.e. intervals).

• λn|I|‖θI‖22: prevent overfitting in large p problems.

• For a fixed P, solving the optimization problem yields an estimator of
the Q-functions {q̂I}I∈P , by either a parametric (linear model) or
nonparametric (deep learning) regression.
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• For a fixed P, solving the optimization problem yields an estimator of
the Q-functions {q̂I}I∈P , by either a parametric (linear model) or
nonparametric (deep learning) regression.
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Estimated I2DR and its Value

• Estimated optimal I2DR:

d̂(x) = arg max
I∈P̂

q̂I(x), ∀x ∈ X ,

when the argmax is not unique, d̂(·) outputs the interval that gives
the smallest doses.

• Consider the generalized propensity score function
e(I|x) ≡ Pr(A ∈ I|X = x). Let ê(I|x) denote the resulting estimate.

• Value estimator (Zhang et al. 2012) of the estimated I2DR:

V̂ =
1

n

n∑
i=1

[
I{Ai ∈ d̂(Xi)}
ê(d̂(Xi)|Xi)

{
Yi −max

I∈P̂
q̂I(Xi)

}
+ max
I∈P̂

q̂I(Xi)

]
.
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Choice of the qI

• Linear-JIL: q(x, θI) = x̄>θI , where x̄ = (1, x>)>.

• Deep-JIL: use deep neural networks (DNNs) to present qI(x).

Figure 1: Illustration of DNN with L = 2 (layers) and W = 25 (parameters).

I Apply the Multi-layer Perceptron (MLP) regressor (Pedregosa et al.
2011) for parameter estimation.
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Implementation of JIL

Apply Dynamic Programming (Friedrich et al. 2008) to Find P̂
• For any interval I ⊂ [0, 1], define the cost function

cost(I) = min
q(·;θI)∈QI

[
1

n

n∑
i=1

I(Ai ∈ I)
{
Yi − q(Xi; θI)

}2
+ λn||θI ||22

]
,

• For any integer 1 ≤ r ≤ m, define B(m, r): the set of all possible
partitions Pr of [0, r/m) with grid points {j/m : j = 0, 1, . . . , r}.
Note B(m,m) = B(m).

• Define the Bellman function

B(r) = inf
Pr∈B(m,r)

(∑
I∈Pr

cost(I) + γn(|Pr| − 1)

)
,

with B(0) = −γn.
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Implementation of JIL

Pruned Exact Linear Time Method (PELT) (Killick et al. 2012)

Calculate the Bellman equation in a recursion formula,

B(r) = min
j∈Rr

{B(j) + γn + cost([j/m, r/m))} , ∀r ≥ 1.

where Rr is the candidate change points list updated by

{j ∈ Rr−1 ∪ {r − 1} : B(j) + cost([j/m, (r − 1)/m)) ≤ B(r − 1)},

during each iteration with R0 = {0}.
• Given r, search the optimal change point j that minimizes B(r);

• Let τ(r) be the corresponding minimizer;

• Iteratively compute B(r) and τ(r) for r = 1, . . . ,m;

• The optimal partition P̂ is determined by the values stored in τ(·).
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Results under Model I: Linear-JIL with qI,0(x) = x̄>θI,0

[A4] [Condition on Tails] and [A5] [Margin Condition]

Theorem 1. Convergence Rate of Linear-JIL under Model I

Assume (A1)-(A5) hold. Assume m � n, λn = O(n−1 log n), {γn}n∈N
satisfies γn → 0 and γnn/ log n→∞. There exist constants c̄1, c̄2 > 0 s.t.
the following events hold with probability at least (w.p.a.l.) 1−O(n−2):
(i) |P̂| = |P0|.
(ii) maxτ∈J(P0) min

τ̂∈J(P̂) |τ̂ − τ | ≤ c̄1n
−1 log n.

(iii)
∫ 1
0 ‖θ̂(a)− θ0(a)‖22da ≤ c̄n−1 log n.

(iv)

V opt − V (d̂) ≤ c̄2(n−1 log n)(1+γ)/2 + c̄2n
−1 log n.

Note: V opt = V (dopt), and J(P) is the set of change point locations.
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Results under Model I: Deep-JIL

Additional assumptions in DNN theories (Farrell et al. 2021): A6 and A7.

Theorem 2. Convergence Rate of Deep-JIL under Model I

Assume (A1)-(A7) hold. Assume m � n, {γn}n∈N satisfies γn → 0 and
γn � n−2β/(2β+p) log8 n. There exist a constant c̄ > 0 and DNN classes
{QI : I} with LI � log(n|I|) and WI � (n|I|)p/(2β+p) log(n|I|) s.t.
w.p.a.l. 1−O(n−2), the Deep-JIL estimator satisfies

(i) |P̂| = |P0|;
(ii) maxτ∈J(P0) min

τ̂∈J(P̂) |τ̂ − τ | ≤ c̄n
−2β/(2β+p) log8 n;

(iii) E|Q(X,A)−
∑
I∈P̂ I(A ∈ I)q̂I(X)|2da ≤ c̄n−2β/(2β+p) log8 n;

(iv) V (d̂) ≥ V opt −O(1)(n
− 2β

2β+p log8 n+ n
− 2β(1+γ)

(2β+p)(2+γ) log
8+8γ
2+γ n).
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Results for the Value Estimator under Model I

• Linear-JIL: V (d̂) = V opt + op(n
−1/2) (by Theorem 1 (iv))

• Deep-JIL: if 4β(1 + γ) > (2β + p)(2 + γ), we have
V (d̂) = V opt + op(n

−1/2) (by Theorem 2 (iv))

Theorem 3. Asymptotic Normality of Value Estimator under Model I

Assume (A8)({ê(I}) holds, and for any I1, I2 ∈ P0 with I1 6= I2, we have
Pr(qI1,0(X) = qI2,0(X)) = 0. For some σ20 > 0, we have

√
n(V̂ − V opt)

d→ N(0, σ20).

Here, σ20 can be estimated by

σ̂2 =
1

n− 1

n∑
i=1

[
I{Ai ∈ d̂(Xi)}
ê(d̂(Xi)|Xi)

{
Yi −max

I∈P̂
q̂I(Xi)

}
+ max
I∈P̂

q̂I(Xi)− V̂

]2
,

where {q̂I(·)} is the value estimations under Linear-JIL or Deep-JIL.
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Results under Model II

Theorem 4. Convergence Rate under Dose-Varying Coefficient Model

Assume (A1)-(A5) and (A9) (Lipschitz continuity) hold. Assume m � n,
λn = O(n−1 log n), γn satisfies γn � (n−1 log n)(1+2α0)/(1+4α0). There
exists c̄∗ > 0 s.t. the following occurs w.p.a.l. 1−O(n−2):

V opt − V (d̂) ≤ c̄∗(n−1 log n)α0/(1+4α0).

Theorem 5. Consistency under General Continuous Model

Assume (A1)-(A4), (A6)-(A7) hold, m � n, and γn satisfies γn → 0 and
γn � n−2β/(2β+p) log8 n. There exist a constant c̄ > 0 and DNN classes
{QI : I} with LI � log(n|I|) and WI � (n|I|)p/(2β+p) log(n|I|) s.t.
w.p.a.l. 1−O(n−2), the Deep-JIL estimator satisfies

V opt − V (d̂) = op(1).
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Settings under Model I

Y |X,A ∼ N(Q(X,A), 1), A|X ∼ Unif[0, 1], X(1), . . . , X(p) iid∼ N(0, 1),

where p = 4 and consider the following two scenarios for Q(X,A):

• Scenario 1

Q(x, a) =


1 + x(1), a < 0.35,

x(1) − x(2), 0.35 ≤ a < 0.65,

1− x(2), a ≥ 0.65.

• Scenario 2

Q(x, a) =


1 + (x(1))3, a < 0.35,

x(1) − log(1.5 + x(2)), 0.35 ≤ a < 0.65,

1− sin(0.5dx(2)), a ≥ 0.65.

• J(P0) = {0.35, 0.65} and |P0| = 3.
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Simulation Results I

Scenario 1, p = 4 Scenario 2, p = 4
n = 200 n = 400 n = 800 n = 200 n = 400 n = 800

Method V opt 1.34 1.35

Linear-JIL V̂ 1.436 1.383 1.340 NA NA NA
σ̂ 0.129 0.091 0.066 NA NA NA

CP 89.80 93.20 95.60 NA NA NA

|P̂| 2.97 3.01 3.00 NA NA NA

Deep-JIL V̂ 1.297 1.338 1.345 1.333 1.331 1.349
σ̂ 0.160 0.108 0.060 0.166 0.102 0.060

CP 90.60 93.60 96.00 95.60 93.80 95.00

|P̂| 2.98 3.25 3.18 2.95 3.10 3.08

• Set m = n/5, λn = 0, and γn = 4n−1 log(n).

• Conduct 500 runs for each setting.

• CP, coverage probability for the optimal value function.
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Settings for General Models

• Scenario 3

Q(x, a) =


√
x(1)/2 + 0.5, a < 0.25,

sin(2dx(2)), 0.25 ≤ a < 0.5,

0.5− (x(1) + x(2) − 0.75)2, 0.5 ≤ a < 0.75,
0.5, a ≥ 0.75.

• Scenario 4 Q(x, a) = x̄>{2|a− 0.5|θ∗}, θ∗ = (1, 2,−2, 0>p−2)
>.

• Scenario 5

Q(x, a) = 8 + 4x(1) − 2x(2) − 2x(3) − 10(1 + 0.5x(1) + 0.5x(2) − 2a)2.

• Compare with outcome weighted learning (Chen et al. 2016) based on
linear function (L-O-L) and Gaussian kernel (K-O-L). Fix the
parameter φn = 0.1, and select tuning parameters by cross-validation.
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Simulation Results II with morecm = n/10

n 50 100 200 400 800

Scenario 1 L-JIL 0.783(0.016) 0.832(0.016) 1.080(0.014) 1.259(0.002) 1.297(0.001)
V = 1.34 D-JIL 0.914(0.012) 0.967(0.008) 1.050(0.005) 1.071(0.005) 1.138(0.001)
p = 20 L-O-L 0.558(0.004) 0.574(0.004) 0.600(0.005) 0.597(0.005) 0.583(0.005)

K-O-L 0.335(0.008) 0.415(0.006) 0.441(0.006) 0.457(0.005) 0.489(0.004)

Scenario 2 L-JIL 0.741(0.021) 0.854(0.020) 1.180(0.007) 1.266(0.001) 1.299(0.001)
V = 1.35 D-JIL 0.900(0.012) 0.978(0.008) 1.074(0.004) 1.102(0.003) 1.141(0.001)
p = 20 L-O-L 0.450(0.009) 0.448(0.006) 0.447(0.005) 0.429(0.004) 0.410(0.003)

K-O-L 0.115(0.019) 0.213(0.010) 0.229(0.007) 0.241(0.004) 0.276(0.002)

Scenario 3 L-JIL 0.227(0.020) 0.268(0.013) 0.372(0.008) 0.432(0.003) 0.511(0.002)
V = 0.76 D-JIL 0.453(0.019) 0.469(0.009) 0.511(0.005) 0.526(0.004) 0.545(0.002)
p = 20 L-O-L 0.002(0.010) -0.009(0.008) -0.060(0.006) -0.090(0.005) -0.107(0.004)

K-O-L -0.268(0.026) -0.233(0.015) -0.260(0.009) -0.251(0.006) -0.233(0.003)

Scenario 4 L-JIL 0.553(0.013) 0.564(0.011) 0.630(0.011) 0.806(0.006) 0.882(0.002)
V = 1.28 D-JIL 0.612(0.014) 0.651(0.008) 0.684(0.004) 0.653(0.006) 0.801(0.001)
p = 20 L-O-L 0.525(0.016) 0.458(0.010) 0.375(0.004) 0.300(0.002) 0.237(0.001)

K-O-L 0.236(0.007) 0.260(0.004) 0.252(0.003) 0.244(0.001) 0.246(0.001)

Scenario 5 L-JIL 5.82(0.05) 6.41(0.02) 6.80(0.01) 7.02(0.01) 7.16(0.01)
V = 8.00 D-JIL 5.57(0.06) 5.79(0.03) 5.97(0.02) 6.10(0.01) 6.26(0.01)
p = 20 L-O-L 5.92(0.07) 6.75(0.03) 7.32(0.02) 7.66(0.01) 7.81(0.01)

K-O-L 6.70(0.02) 7.05(0.02) 7.38(0.01) 7.58(0.01) 7.56(0.01)
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Data Analysis: Warfarin Dose Data

• Total 3848 patients with 6 covariates: age, height, weight, gender
(male=1), the VKORC1.AG genotype and VKORC1.AA genotype.

• Warfarin dose: 10mg to 100mg per week. Dose A is scaled into [0, 1].

• The response Y = −|INR− 2.5|.
• Linear-JIL found three dose intervals: [0, 0.05), [0.05, 0.17), [0.17, 1].

• Our value is −0.332 > −0.344 by K-O-L (Chen et al., 2016).

• The estimated θ̂’s are given by
Intercept Age Weight Height Gender VKORC1.AG VKORC1.AA

θ̂1 -1.673 0.025 0.006 0.006 -0.158 -0.364 -0.349

θ̂2 -1.741 0.029 0.004 0.006 -0.201 0.057 -0.051

θ̂3 -0.488 0.012 0.001 0.001 -0.033 -0.002 -0.120

• Some findings (by fixing all the other variables):
I Patients with VKORC1 as AG or AA should receive higher doses.
I Younger patients should be recommended for lower doses.
I Male patients should be recommended for higher doses.
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Visualization for the Estimated I2DR

Figure 2: The 3D plot for the proposed I2DRCai, H. (NCSU) Oral Prelim Aug 27th, 2021 29 / 47



Challenges (2): Policy Evaluation in Continuous
Treatment Domains



Challenges (2): Policy Evaluation in Continuous Treatment
Domains

Consider a decision making problem in a continuous domain:

A B C D

Dose
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Challenges (2): Policy Evaluation in Continuous Treatment
Domains

Decision 1: a simple decision rule that always assigns individuals to a fixed
best treatment option.

A B C D

Dose
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Challenges (2): Policy Evaluation in Continuous Treatment
Domains

Decision 2: an individualized decision rule (IDR) that assigns individuals
with treatments according to their baseline covariates.

A B C D

Dose

A B C D

Decision Rule 1

Decision Rule 2
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Challenges (2): Policy Evaluation in Continuous Treatment
Domains

Prior to adopting any decision rule in practice, it is crucial to know the
impact of implementing such a rule.

A B C D

Dose

A B C D

Decision Rule 1

Decision Rule 2

Better?
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Challenges (2): Policy Evaluation in Continuous Treatment
Domains

It is risky to apply an IDR online to estimate its mean outcome. Policy
evaluation proposes to use the offline data from a different historical rule.

A B C D

Dose

A B C D

Offline Data
by historical 

rule

Evaluate
New Rule
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Problem Setting

• Data: (Xi, Ai, Yi), i = 1, · · · , n;
I Xi ∈ X : p-dimensional covariates.
I Ai ∈ [0, a0]: received dose. w.l.o.g., set a0 = 1.
I Yi: outcome of interest, the larger the better.

• Potential outcomes Y ∗(a), a ∈ [0, 1].

• Individualized decision rule (IDR) d(X) :
I X → [0, 1].
I X ∈ X → I ⊂ [0, 1], where I is a subinterval in [0, 1].

• Assume SUTVA, no unmeasured confounders, and the positivity.

• Value: V (d) = E[Q{X, d(X)}] with Q(x, a) = E(Y |X = x,A = a).
(Also see value function under I2DR.)

• Goal: estimate the value V (d) given any target IDR d based on the
observed data.
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Related Works

• Most of current works on personalized decision making focus on
policy optimization not policy evaluation;

I See e.g.,Chakraborty et al. (2010), Song et al. (2015), Shi et al. (2018).

• Majority of offline policy evaluation methods focus on binary/finite
treatment options.

I See e.g., Wang et al. (2012), Zhang et al. (2012), Chakraborty et al.
(2014), Luedtke & Van Der Laan (2016).

• A doubly robust (DR) estimator of V (d) for discrete treatments (see
e.g., Zhang et al. 2012):

1

n

n∑
i=1

[
Q̂{Xi, d(Xi)}+

I{Ai = d(Xi)}
p̂(Ai|Xi)

{Yi − Q̂(Xi, Ai)}
]
,

where I(•) denotes the indicator function, Q̂ and p̂ denote some
estimators for the Q-function and the propensity score function.
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Related Works

• Available methods for continuous treatments rely on the use of a
kernel function.

• A DR estimator of V (d) for continuous treatments (see e.g., Kallus &
Zhou 2018, Colangelo & Lee 2020):

1

n

n∑
i=1

[
Q̂{Xi, d(Xi)}+

K{Ai−d(Xi)h }
p̂(Ai|Xi)

{Yi − Q̂(Xi, Ai)}

]
,

where K(·) is a kernel function and h is the kernel bandwidth.

• Limitation 1: Require the mean outcome to be smooth over the
treatment space;

• Limitation 2: Use a single bandwidth parameter, which may be
sub-optimal.
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Summary of Our Work

• Propose deep jump evaluation method for continuous treatments by
integrating multi-scale change point detection, deep learning,
and the doubly-robust value estimators in discrete domains;

• Our method does not require kernel bandwidth selection, by
adaptively discretizing the treatment space using deep discretization;

• Our method has a better convergence rate, allowing the conditional
mean outcome to be either a continuous or piecewise function of the
treatment.
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Deep Jump Learning for Off-Policy Evaluation in
Continuous Treatment Settings



Recap: Limitations of Kernel-based Evaluation Methods

• Recall the DR estimator of V (d) for continuous treatments (see e.g.,
Kallus & Zhou 2018, Colangelo & Lee 2020):

1

n

n∑
i=1

[
Q̂{Xi, d(Xi)}+

K{Ai−d(Xi)h }
p̂(Ai|Xi)

{Yi − Q̂(Xi, Ai)}

]
,

where K(·) is a kernel function and h is the kernel bandwidth.

• Limitation 1: Require the mean outcome to be smooth over the
treatment space;

I In dynamic pricing, the expected demand for a product has jump
discontinuities as a function of the charged price (den Boer & Keskin
2020).

• Limitation 2: Use a single bandwidth parameter, which may be
sub-optimal;

I when the second-order derivative of the conditional mean function has
an abrupt change in the treatment space.
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Toy Example

Consider a smooth function Q(x, a) = 10 max(a2 − 0.25, 0) log(x+ 2) for
any x, a ∈ [0, 1]: with different patterns when the treatment belongs to
different intervals:

• For a ∈ [0, 0.5], Q(x, a) is constant as a function of a.

• For a ∈ (0.5, 1], Q(x, a) depends quadratically in a.
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Sub-optimality of Kernel-Based Method in Toy Example

Target policy: d(x) = x; the value V (d) = V (1)(d) + V (2)(d) where

• V (1)(d) = E[Q{X, d(X)}I{d(X) ≤ 0.5}];
• V (2)(d) = E[Q{X, d(X)}I{d(X) > 0.5}].

Bias (SD) Indicator Kernel with h = 0.4 Kernel with h = 1

V (1)(d) I{d(X) ≤ 0.5} 0.50 (0.08) 0.40 (0.05)

V (2)(d) I{d(X) > 0.5} 0.16 (0.20) 1.09 (0.09)

Due to the use of a single bandwidth, the kernel-based estimator suffers
from either a large bias or a large variance.

• By Theorem 1 of Kallus & Zhou (2018), the leading term of bias:

h2
∫
u2K(u)du

2
E

{
∂2Q(X, a)

∂a2

∣∣∣∣
a=d(X)

}
.

Cai, H. (NCSU) Oral Prelim Aug 27th, 2021 37 / 47



Sub-optimality of Kernel-Based Method in Toy Example

Target policy: d(x) = x; the value V (d) = V (1)(d) + V (2)(d) where

• V (1)(d) = E[Q{X, d(X)}I{d(X) ≤ 0.5}];
• V (2)(d) = E[Q{X, d(X)}I{d(X) > 0.5}].

Bias (SD) Indicator Kernel with h = 0.4 Kernel with h = 1

V (1)(d) I{d(X) ≤ 0.5} 0.50 (0.08) 0.40 (0.05)

V (2)(d) I{d(X) > 0.5} 0.16 (0.20) 1.09 (0.09)

Due to the use of a single bandwidth, the kernel-based estimator suffers
from either a large bias or a large variance.

• By Theorem 1 of Kallus & Zhou (2018), the leading term of bias:

h2
∫
u2K(u)du

2
E

{
∂2Q(X, a)

∂a2

∣∣∣∣
a=d(X)

}
.

Cai, H. (NCSU) Oral Prelim Aug 27th, 2021 37 / 47



Sub-optimality of Kernel-Based Method in Toy Example

Target policy: d(x) = x; the value V (d) = V (1)(d) + V (2)(d) where

• V (1)(d) = E[Q{X, d(X)}I{d(X) ≤ 0.5}];
• V (2)(d) = E[Q{X, d(X)}I{d(X) > 0.5}].

Bias (SD) Indicator Kernel with h = 0.4 Kernel with h = 1

V (1)(d) I{d(X) ≤ 0.5} 0.50 (0.08) 0.40 (0.05)

V (2)(d) I{d(X) > 0.5} 0.16 (0.20) 1.09 (0.09)

Due to the use of a single bandwidth, the kernel-based estimator suffers
from either a large bias or a large variance.

• By Theorem 1 of Kallus & Zhou (2018), the leading term of bias:

h2
∫
u2K(u)du

2
E

{
∂2Q(X, a)

∂a2

∣∣∣∣
a=d(X)

}
.

Cai, H. (NCSU) Oral Prelim Aug 27th, 2021 37 / 47



Motivation from Toy Example: Adaptive Discretization

Bias (SD) Indicator Deep Jump Learning Kernel with h = 0.4 Kernel with h = 1

V (1)(π) I{π(X) ≤ 0.5} 0.31 (0.06) 0.50 (0.08) 0.40 (0.05)

V (2)(π) I{π(X) > 0.5} 0.09 (0.19) 0.16 (0.20) 1.09 (0.09)
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Deep Jump Evaluation

Deep jump evaluation integrates multi-scale change point detection,
deep learning, and the doubly-robust value estimators in discrete
domains.

0

1

2

Y

A B C D

Dose

A B C D

Offline Data
by historical 

rule

Evaluate
New Rule

Deep jump evaluation works for both Model I and Model II:

Model I: Piecewise function: Q(x, a) =
∑
I∈P0

{qI,0(x)I(a ∈ I)}, for
some partition P0 of [0, 1] and a collection of functions {qI,0}I∈P0 .

Model II: Continuous function: Q is a continuous function of a and x.
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Step 1: Deep Discretization

• Recall notations in jump interval learning.

• Model these qI in some function class of deep neural networks QI , to
capture the complex dependence between the outcome and features.

• Estimate Discretization by:(
P̂, {q̂I : I ∈ P̂}

)
= arg min

(P∈B(m),{qI∈QI :I∈P})(∑
I∈P

[
1

n

n∑
i=1

I(Ai ∈ I)
{
Yi − qI(Xi)

}2]
+ γn|P|

)
,

for some regularization parameter γn.
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Step 2: Policy Evaluation

Doubly Robust Estimator under Deep Jump Evaluation

Given P̂ and {q̂I : I ∈ P̂}, the value for any decision rule of interest d is

V̂ (d) =
1

n

∑
I∈P̂

n∑
i=1

(
I{d(Xi) ∈ I}

[
I(Ai ∈ I)

p̂I(Xi)

{
Yi − q̂I(Xi)

}
+ q̂I(Xi)

])
,

where p̂I(x) is some estimator of the generalized propensity score function
Pr(A ∈ I|X = x).

The complete algorithm consists of:

• Data Splitting: use different subsets of data samples to estimate the
discretization and to construct the value estimator.

• Deep Discretization: apply PELT method (Killick et al. 2012) in
multi-scale change point detection.

• Cross-fitting: to remove the bias induced by overfitting.
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Convergence Rates

Recall assumptions in DNN theories (Farrell et al. 2021): A6 and A7.

Theorem 1 (under Model I (Piecewise Function))

Suppose m � n, γn satisfies γn → 0 and γn � n−2β/(2β+p) log8 n. There
exist some classes of DNNs s.t. for any decision rule d,

V̂ (d) = V (d) +Op{n−2β/(2β+p) log8 n}+Op(n
−1/2).

Theorem 2 (under Model II (Continuous Function))

Suppose m � n and γn is proportional to max{n−3/5, n−2β/(2β+p) log9 n}.
Then for any decision rule d,

V̂ (d)− V (d) = Op(n
−1/5) +Op{n−2β/(6β+3p) log3 n}.

When 4β > 3p, the convergence rate is given by Op(n
−1/5).
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Theoretical Comparison with Kernel-Based Methods

Assume the symmetric kernel; set oracle values Q and b; and 4β > 3p.

• Suppose Model I holds.
I Convergence rate of kernel-based methods is Op(n

−1/3) with optimal
bandwidth selection.

I The proposed estimator converges at a faster rate of Op(n
−1/2).

• Suppose Model II holds.
I Convergence rate of kernel-based methods is Op(h) +Op(n

−1/2h−1/2).
I When the second-order derivative of Q has an abrupt change in the

treatment space, they suffer from either a large bias, or a large variance.
I When h is either much larger than n−1/5 or much smaller than n−3/5,

our estimator converges at a faster rate of Op(n
−1/5).

• Kernel-based estimators could converge at a faster rate when Q has a
uniform degree of smoothness over the entire treatment space and
the optimal bandwidth parameter is correctly identified.
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I The proposed estimator converges at a faster rate of Op(n
−1/2).

• Suppose Model II holds.
I Convergence rate of kernel-based methods is Op(h) +Op(n

−1/2h−1/2).
I When the second-order derivative of Q has an abrupt change in the

treatment space, they suffer from either a large bias, or a large variance.
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Simulation Settings

Y |X,A ∼ N{Q(X,A), 1}, A|X ∼ Unif[0, 1]X(1), . . . , X(p) iid∼ Unif[−1, 1],
where p = 20 and consider the following four scenarios for Q(X,A):

• Scenario 1

Q(x, a) =(1 + x(1))I(a < 0.35) + (x(1) − x(2))I(0.35 ≤ a < 0.65)

+ (1− x(2))I(a ≥ 0.65).

• Scenario 2

Q(x, a) =I(a < 0.25) + sin(2πx(1))I(0.25 ≤ a < 0.5)

+ {0.5− 8(x(1) − 0.75)2}I(0.5 ≤ a < 0.75) + 0.5I(a ≥ 0.75).

• Scenario 3 (toy example)

Q(x, a) = 10 max{a2 − 0.25, 0} log(x(1) + 2).

• Scenario 4

Q(x, a) = 0.2(8 + 4x(1) − 2x(2) − 2x(3))− 2(1 + 0.5x(1) + 0.5x(2) − 2a)2.

Target policy: the optimal policy that achieves the highest mean outcome.
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Simulation Results I

• SLOPE by Su et al. (2020): adopt the Lepski’s method for bandwidth
selection.

• Kallus & Zhou (2018): compute h∗ using data with sample size
n0 = 50, and adjust h∗ by setting h∗{n0/n}0.2 for different n.

• Colangelo & Lee (2020): manually select the best bandwidth by
h = cσAn

−0.2 with c ∈ {0.5, 0.75, 1.0, 1.5}.
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Figure 3: The target values are 1.33, 1, 4.86 and 1.6, respectively.
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Simulation Results II

Table 1: The averaged computational cost (in minutes) for Scenario 1.

Methods DJL SLOPE (Su et al. 2020) Kallus & Zhou (2018) Colangelo & Lee (2020)

n = 50 < 1 < 1 365 < 1

n = 100 3 < 1 773 < 1

n = 200 7 1 > 1440 (24 hours) < 1

n = 300 14 2 > 2880 (48 hours) < 1
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Figure 4: The bias and the time cost of DJL with different m for n = 100 in S1.
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Real Data Analysis: Warfarin Dosing

• Use p = 81 baseline covariates.

• Calibrate data for evaluation:
I Fit Q̂(X,A) based on DNN. Randomly sample (aj , xj) from
{(A1, X1), · · · , (An, Xn)} with replacement;

I For each j, generate yj according to N{Q̂(xj , aj), σ̂
2}, where σ̂ is the

standard deviation of the fitted residual {Yi − Q̂(Xi, Ai)}i.
• Decision rule of interest: d?(X) ≡ arg maxa∈[0,1] Q̂(X, a), with target

value as −0.278.

Methods Bias Standard deviation Mean squared error

Deep Jump Learning 0.259 0.416 0.240

SLOPE (Su et al. 2020) 0.611 0.755 0.943

Kallus & Zhou (2018) 0.662 0.742 0.989

Colangelo & Lee (2020) 0.442 1.164 1.550
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Thank You!



Appendix: Summary of JIL Algorithm



Appendix: Tuning Parameters Selection

• For initial number of intervals m, we recommend to set m = n/c
with some constant c > 0 such that m and n are of the same order.

• For linear-JIL, we choose γn and λn simultaneously via
cross-validation. We develop an algorithm to facilitate the
computation.

• For deep-JIL, find that the MLP regressor is not overly sensitive to
the choice of λn, so we set λn = 0. The parameter γn is chosen
based on cross-validation.



Appendix: Technical Assumptions

A4 [Condition on Tails]There exists some constant ω > 0 such that
‖X(j)‖ψ2|A ≤ ω, for any j ∈ {1, . . . , p} and ‖Y ‖ψ2|A ≤ ω almost
surely. Here, ‖Z‖ψ2|A denotes the conditional Orlicz norm of Z given
the dose level A.

A5 [Margin Condition] For any I1, I2 ∈ P0, there exist some constants
γ, δ0 > 0 such that

Pr(0 < |qI1,0(X)− qI2,0(X)| ≤ t) = O(tγ),

where the big-O term is uniform in 0 < t ≤ δ0.

A6 Suppose Q(x, a) and p(a|x) belong to the class of β-smooth
functions in terms of x, for any a.

A7 Functions {q̂I}I∈P̂ are uniformly bounded.



Appendix: Technical Assumptions

A8 [E{ê(I|X)− e(I|X)}2]1/2 = o(n−1/4) and ê(I|X) belongs to the
class of VC-type functions with VC-index upper bounded by O(n1/2).
{êI}I∈P̂ are uniformly bounded away from zero.

A9 Suppose there exist some constants L > 0, 0 < α0 ≤ 1 such that
θ0(·) satisfies supa1,a2∈[0,1] ‖θ0(a1)− θ0(a2)‖2 ≤ L|a1 − a2|

α0 .



Appendix: Simulation Results III: Deep-JIL with Different
m = n/c

n 50 100 200 400 800

Scenario 1 c = 6 0.941(0.012) 0.972(0.008) 1.028(0.004) 1.065(0.004) 1.127(0.001)
V = 1.34 c = 8 0.973(0.016) 0.990(0.008) 1.030(0.004) 1.053(0.005) 1.136(0.001)
p = 20 c = 10 0.914(0.012) 0.967(0.008) 1.050(0.005) 1.071(0.005) 1.138(0.001)

Scenario 2 c = 6 0.943(0.013) 0.980(0.008) 1.037(0.004) 1.087(0.003) 1.129(0.001)
V = 1.35 c = 8 1.002(0.015) 1.012(0.008) 1.039(0.004) 1.076(0.003) 1.137(0.001)
p = 20 c = 10 0.900(0.012) 0.978(0.008) 1.074(0.004) 1.102(0.003) 1.141(0.001)

Scenario 3 c = 6 0.475(0.018) 0.480(0.009) 0.481(0.006) 0.493(0.004) 0.521(0.002)
V = 0.76 c = 8 0.416(0.019) 0.497(0.009) 0.493(0.006) 0.506(0.003) 0.532(0.002)
p = 20 c = 10 0.453(0.019) 0.469(0.009) 0.511(0.005) 0.526(0.004) 0.545(0.002)

Scenario 4 c = 6 0.624(0.014) 0.655(0.008) 0.686(0.004) 0.687(0.005) 0.801(0.001)
V = 1.28 c = 8 0.622(0.014) 0.651(0.008) 0.684(0.004) 0.676(0.005) 0.801(0.001)
p = 20 c = 10 0.612(0.014) 0.651(0.008) 0.684(0.004) 0.653(0.006) 0.801(0.001)

Scenario 5 c = 6 5.49(0.06) 5.69(0.03) 5.82(0.02) 5.97(0.01) 6.12(0.01)
V = 8.00 c = 8 5.58(0.05) 5.77(0.03) 5.91(0.02) 6.04(0.01) 6.20(0.01)
p = 20 c = 10 5.57(0.06) 5.79(0.03) 5.97(0.02) 6.10(0.01) 6.26(0.01)
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