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Introduction

Personalized optimal decision making has attracted increasing attention.

• Developing an individualized treatment rule for patients to optimize
expected clinical outcomes of interest [Medicine];

• Offering customized incentives to increase sales and level of
engagement [Economics];

• Designing a personalized advertisement recommendation system to
raise the click rates [Marketing].
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General Setup for Finding the Optimal Decision Rule

Consider assigning individuals with covariates X to some treatments A.

O1

Treat 1Treat 0 A

XO2 O3 O4
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General Setup for Finding the Optimal Decision Rule

Treatments may be assigned randomly or following some clinical advices.

O1

Treat 1Treat 0 A

XO2 O3 O4
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General Setup for Finding the Optimal Decision Rule

The outcome Y can be observed after A is given. Due to individuals’
heterogeneity in Y to different A, there may not exist a unified best decision.

O1

Treat 1Treat 0 A

XO2 O3 O4

Y

High Low
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General Setup for Finding the Optimal Decision Rule

The goal is to learn the optimal decision rule (ODR) that maximizes the
mean outcome from either randomized trials or observational studies.

O1

Treat 1Treat 0 A

XO2 O3 O4

Y

High Low

Optimal
Decision

Rule
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General Setup for Finding the Optimal Decision Rule

Using ODR, we aim to assign future individuals with the best treatment
option according to their covariates.

O1

Treat 1Treat 0 A

XO2 O3 O4

Y

High Low

Optimal
Decision

Rule
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Real World Problems are Complicated...

Multiple datasets from different sources, such as a primary sample of interest
and other auxiliary datasets.

Multiple
Data

Sources

DATA1

DATA2

DATA3
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Real World Problems are Complicated...

The data structure can be incomplete due to contamination, short experi-
ment duration, etc.

Incomplete
Data

Structure

X X X
A A
Y Y
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Real World Problems are Complicated...

Focus on the challenging intersection: optimal decision making with multiple
data sources and incomplete data structure.

Multiple
Data

Sources

Incomplete
Data

Structure
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Motivation Case: Sepsis in Intensive Care Units (ICU)

In the MIMIC-III clinical database (Goldberger et al. 2000, Johnson et al.
2016, Biseda et al. 2020),

• thousands of patients in ICUs of the
Beth Israel Deaconess Medical Center between 2001 and 2012,

• with 11 covariates (X) including age (years), gender (0=female,
1=male), admission weights (kg), Glasgow Coma Score (GCS), ...

• are treated with different medical supervision (A) such as vasopressor,

• and followed up for their mortality due to sepsis (Y ).

• Some intermediate outcomes (M) (also known as surrogacies or
proximal outcomes) after the treatment was given can be observed,
such as the total urine output and the cumulated net of metabolism.
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Motivation Case: Sepsis in Intensive Care Units (ICU)

Similar information is also recorded in the eICU collaborative research
database (Goldberger et al. 2000, Pollard et al. 2018).

• It contains over 200,000 admissions to ICUs across the United States
between 2014 and 2015,

• with records of covariates (X), medical supervision (A), and
intermediate outcomes (M) as in the MIMIC-III dataset.

• However, the outcome of interest, i.e.,
the mortality due to sepsis (Y ), was unrecorded.

• Goal: to develop an efficient ODR by integrating multiple datasets for
the patients with sepsis.
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Summary of Data Structure

View the MIMIC-III as the primary sample containing general setup for ODR.

O1

Treat 1Treat 0 A

XO2 O3 O4

Primary Sample

Y

High Low
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Summary of Data Structure

View the eICU data as the auxiliary sample from a different source.

O1

Treat 1Treat 0 A

XO2 O1 O2

Y

High Low

Primary Sample

Treat 1Treat 0 A

XO5 O7O6 O8

Auxiliary Sample
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Summary of Data Structure

The outcome of interest is limited and only recorded in the primary sample.

O1

Treat 1Treat 0 A

XO2 O1 O2

Y

High Low

Primary Sample

Treat 1Treat 0 A

X

Y

O5 O7O6 O8

Auxiliary Sample
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Challenges in Developing the ODR in the ICU datasets

Challenge 1. Two samples cannot be combined directly due to the limited
outcome.

O1

Treat 1Treat 0 A

XO2 O1 O2

Y

High Low

Primary Sample

Treat 1Treat 0 A

X

Y

O5 O7O6 O8

Auxiliary Sample
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Challenges in Developing the ODR in the ICU datasets

Challenge 2. Two samples show certain heterogeneity such as different
probability distributions.
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Main Idea

Recall the intermediate outcomes are available in both samples.

O1

Treat 1Treat 0 A

XO2 O1 O2

Primary Sample

Treat 1Treat 0 A

X

Y

O5 O7O6 O8

Auxiliary Sample

M M

Y

High Low
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Main Idea

Connect the shared common information in multiple data sources, through
a calibration technique to address two challenges together.
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Figure 1: The density plots for the conditional mean of two intermediate
outcomes in the MIMIC-III data and the eICU data. Left: for the total output.
Right: for the cumulated balance.
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Related Works

• Use multiple data sources to estimate the average treatment effect
(Yang & Ding 2019, Athey et al. 2020, Kallus & Mao 2020):

I Considered two samples are from the same population and link them
together through a missing data framework.

I Note the MIMIC III and eICU data show their heterogeneity.

• Derive robust ODR to account for heterogeneity in multiple data
sources (Shi et al. 2018b, Mo et al. 2020):

I - Developed a single ODR that can work for multiple data sources.
I - They do not allow missingness in outcomes.

• We are interested in improving the efficiency of the ODR for the
limited outcome observed in the primary sample only, by leveraging
available auxiliary data sources.
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Overview of Calibrated ODR (CODR)

• First work on developing ODR from multiple data sources with the
limited outcome;

• Propose a mild and testable assumption on the conditional means of
M given X and A, to avoid specification of the missing mechanism;

• Develop a new calibration technique by doubly robust estimators for
the conditional mean of outcomes (i.e., the value function) of a class
of decision rules;

• Our proposed calibrated value estimator is shown to be consistent,
asymptotically normal, and more efficient than that obtained using
the primary sample solely.

• Simulation studies are conducted to demonstrate its empirical validity
with a real application to the ICU datasets.
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Statistical Framework

For simplicity of exposition, we consider a study with two data sources.

E: a primary sample of interest with sample size NE .

• XE : r-dimensional individual’s baseline covariates.

• AE ∈ {0, 1}: the treatment an individual receives.

• ME : s-dimensional intermediate outcomes.

• YE : primary outcome of interest.

U : an auxiliary sample with sample size NU .

• XU : r-dimensional individual’s baseline covariates.

• AU ∈ {0, 1}: the treatment an individual receives.

• MU : s-dimensional intermediate outcomes.

• However, primary outcome of interest is not available.

Denote t = NE/NU as the sample ratio between the primary sample and
the auxiliary sample, and 0 < t < +∞.
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Assumptions under CODR

Define the potential outcomes Y ∗E(0) and Y ∗E(1) as the primary outcome
that would be observed after treatment 0 or 1, respectively. Define the
potential intermediate outcomes {M∗E(0),M∗E(1)} and {M∗U (0),M∗U (1)}
similarly.

• (A1). Stable Unit Treatment Value Assumption (SUTVA):

YE = AEY
?
E(1) + (1−AE)Y ?

E(0);

ME = AEM
?
E(1) + (1−AE)M?

E(0);

MU = AUM
?
U (1) + (1−AU )M?

U (0).

• (A2). No Unmeasured Confounders Assumption:

{Y ∗E(0), Y ∗E(1),M∗E(0),M∗E(1)} ⊥⊥ AE | XE ;

{M∗U (0),M∗U (1)} ⊥⊥ AU | XU .
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Assumptions under CODR

Let the propensity score function as πE(x) = Pr(AE = 1|XE = x) for the
primary sample and πU (x) = Pr(AU = 1|XU = x) for the auxiliary sample.

• (A3). Positivity: 0 < πE(x) < 1 for all x ∈ XE , and 0 < πU (x) < 1
for all x ∈ XU .

• (A4). Comparable Intermediate Outcomes (CIO) Assumption:

E(ME |XE = x,AE = a) =E(MU |XU = x,AU = a),

for all x ∈ XE ∪ XU and for all a ∈ {0, 1}.

This assumption is the minimum requirement to combine data
sources from different populations, and is testable based on two
samples. (A4) automatically holds when the data sources are from
the same population.
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the same population.
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Statistical Framework

• Decision Rule d(·) is a deterministic function that maps XE to {0, 1}.
• Value function under d(·) is V (d) = E{Y ∗(d)}, where
Y ∗E(d) = Y ∗E(0){1− d(XE)}+ Y ∗E(1)d(XE) is the potential outcome
under d(·) that would be observed if an individual had received a
treatment according to d(·).

• Optimal Decision Rule (ODR) is to maximize the value function over
the primary sample among a class of decision rules of interest as
dopt(·) = arg mind(·) V (d).

Table 1: The data structure of the two samples under CODR.

Sample X A M Y ODR for Y ODR for M

Primary X X X X X X
Auxiliary X X X × × X
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Architecture of the Proposed CODR

Lemma 1 (Equal Value Function for Intermediate Outcomes)

Under assumptions (A1) - (A4) and homogeneous baseline covariates
(XE ∼ XU ), W (d) ≡ E{M∗E(d)} = E{M∗U (d)}.
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Step 1. Doubly Robust (DR) Estimation

DR Estimator for Intermediate Outcomes

ŴE(d) =
1

NE

NE∑
i=1

I{AE,i = d(XE,i)}
AE,iπ̂E(XE,i) + (1−AE,i){1− π̂E(XE,i)}

[ME,i − θ̂{XE,i, AE,i = d(XE,i)}]

+ θ̂{XE,i, AE,i = d(XE,i)},

ŴU (d) =
1

NU

NU∑
i=1

I{AU,i = d(XU,i)}
AU,iπ̂U (XU,i) + (1−AU,i){1− π̂U (XU,i)}

[MU,i − θ̂{XU,i, AU,i = d(XU,i)}]

+ θ̂{XU,i, AU,i = d(XU,i)},

where ŴE(d) and ŴU (d) are s× 1 vectors, π̂E and π̂U are the estimators
of the propensity score functions, and θ̂(x, a) is the estimated conditional
mean for θ(x, a) ≡ E(ME |XE = x,AE = a) = E(MU |XU = x,AU = a)
based on two samples under (A4).
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Step 2. Calibration – Mean Zero Value Difference Vector

With regular conditions, we can show√
NE

{
ŴE(d)−W (d)

}
D−→ Ns

{
0s,ΣE(d)

}
,√

NU

{
ŴU (d)−W (d)

}
D−→ Ns

{
0s,ΣU (d)

}
,

where 0s is the s-dimensional zero vector, ΣE and ΣU are s× s matrices
presenting the asymptotic covariance matrices for two samples.

Lemma 2

Assume (A1)-(A4) hold. With regular conditions and
T ≡ limNE→+∞ t ∈ (0,+∞), we have√

NE

{
ŴE(d)− ŴU (d)

}
D−→ Ns

{
0s,ΣM (d)

}
,

where ΣM (d) = ΣE(d) + TΣU (d) is a s× s asymptotic covariance matrix.
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Step 2. Calibration – Calibrated Value Estimator

DR Estimator for Primary Outcome in the Primary Sample

V̂E(d) =
1

NE

NE∑
i=1

I{AE,i = d(XE,i)}[YE,i − µ̂E{XE,i, AE,i = d(XE,i)}]
AE,iπ̂E(XE,i) + (1−AE,i){1− π̂E(XE,i)}

+ µ̂E{XE,i, AE,i = d(XE,i)},

where µ̂E(x, a) is the estimator for E(YE |XE = x,AE = a).

With regular conditions, we can show√
NE

{
V̂E(d)− V (d)

}
D−→ N

{
0, σ2

Y (d)
}
, (1)

where σ2
Y (d) is the asymptotic variance given any d(·).
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Step 2. Calibration – Calibrated Value Estimator (cont.)

Based on (1) and Lemma 2, we have

√
NE

[
V̂E(d)− V (d)

ŴE(d)− ŴU (d)

]
D−→ Ns+1

{
0s+1,

[
σ2
Y (d),ρ(d)>

ρ(d),ΣM (d)

]}
, ∀d(·),

where ρ(d) is the s× 1 asymptotic covariance vector.

Calibrated Value Estimator

V̂ (d) = V̂E(d)− ρ̂(d)>Σ̂−1
M (d){ŴE(d)− ŴU (d)},

where ρ̂(d) is the estimator for ρ(d), and Σ̂M (d) is the estimator for
ΣM (d).
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Step 3. Learn the ODR from Calibrated Value Estimator

Calibrated Optimal Decision Rule (CODR)

The CODR is found to optimize the calibrated value estimator within a
pre-specified class of decision rules Π as d̂ = arg maxd∈Π V̂ (d), with the

corresponding estimated value function as V̂ (d̂).

• Class of decision rules: Vapnik-Chervonenkis (VC) Class: Π has a
finite VC-dimension and is countable, such as finite-depth decision
trees, generalized linear rules, and threshold rules.

• Estimation models: the propensity score function π and the
conditional mean µ can be estimated through any parametric or
nonparametric model.
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Theoretical Properties

Theorem 1 (Consistency)

Under (A1)-(A7), (i) σ̂2
Y (d) = σ2

Y (d) + op(1); (ii) ρ̂(d) = ρ(d) + op(1);

(iii) Σ̂M (d) = ΣM (d) + op(1); (iv) V̂ (d) = V (d) + op(1).

Theorem 2 (Asymptotic Distribution)

Suppose {dopt, d̂} ∈ Π. Under assumptions (A1)-(A8), we have√
NE

{
V̂ (d̂)− V (dopt)

}
D−→ N

{
0, σ2(dopt)

}
,

where σ2(dopt) = σ2
Y (dopt)− ρ(dopt)>Σ−1

M (dopt)ρ(dopt).

Remark: When Y is correlated with one of the selected M , i.e., ρ(dopt) is
a non-zero vector, the asymptotic variance of the calibrated value
estimator is strictly smaller than that based on the primary sample solely.
The proposed CODR is more efficient by integrating different data sources.
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Simulation Studies

Data generated from

A
I.I.D.∼ Bernoulli{π(X)}, X(1), · · · , X(r) I.I.D.∼ Uniform[−2, 2],

M = UM (X) +ACM (X) + εM , Y = UY (X) +ACY (X) + εY ,

where logit{π(X)} = 0.4 + 0.2X(1) − 0.2X(2), εM
I.I.D.∼ N(0, 1/3) in the

primary sample while εM
I.I.D.∼ Uniform[−1, 1] in the auxiliary sample, and

εY
I.I.D.∼ N(0, 1).

Scenario 1 (decision tree):{
UM (X) = X(1) + 2X(2), CM (X) = X(1) ×X(2);

UY (X) = 2X(1) +X(2), CY (X) = 2X(1) ×X(2).

Scenario 2 (linear rule):{
UM (X) = X(1) + 2X(2), CM (X) = X(1) −X(2);

UY (X) = 2X(1) +X(2), CY (X) = 2{X(2) −X(1)}.
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Simulation Studies
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Figure 2: The box-plot of the biases of the estimated values under different
methods. Left: for Scenario 1. Right: for Scenario 2.
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Real Data Analysis: ICU Datasets

Recall the MIMIC-III dataset as the primary sample and the eICU data as
the auxiliary sample:

• There were NE = 10746 sepsis patients (in MIMIC-III) treated in
Israel during 2001 to 2012, and NU = 7402 (in eICU) treated in the
United States during 2014 to 2015.

• r = 11 Covariates X: age (years), gender (0=female), admission
weights (kg), admission temperature (Celsius), Glasgow Coma Score
(GCS), sodium amount (meq/L), glucose amount (mg/dL), blood
urea nitrogen amount (BUN, mg/dL), creatinine amount (mg/dL),
white blood cell count (WBC, E9/L), and total input amount (mL).

• The treatment A is coded as 1 if receiving the vasopressor, and 0 if
receiving other medical supervision such as IV fluid resuscitation.

• s = 2 Intermediate Outcomes M : total urine output (mL) and
cumulated balance (mL) of metabolism.

• The outcome of interest (YE) is 0 if a patient died due to sepsis and
1 if a patient is still alive, observed only in the primary sample.
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Results

Table 2: The real data analysis under the proposed CODR method and the
original ODR method based on the primary sample solely. All the decision rules
are searched within the class of decision trees.

Sample Size NE = 1000 NE = 5000 NE = 10746

Method CODR ODR CODR ODR CODR ODR

Estimated V̂ (·) 0.180 0.147 0.204 0.184 0.203 0.192

Estimated σ̂ 0.0182 0.0199 0.0090 0.0097 0.0065 0.0068

Improved Efficiency 8.5% / 7.2% / 4.4% /

# Treatment 0 545 460 2967 2671 5853 5478

# Treatment 1 455 540 2033 2329 4893 5268

Matching Rate 85.4% / 87.5% / 86.5% /
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Thank You!
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Estimation on Variances

Define the value functions for primary outcome at the individual level as

v̂
(i)
E (d) :=

I{AE,i = d(XE,i)}[YE,i − µ̂E,i]
AE,iπ̂E(XE,i) + (1−AE,i){1− π̂E(XE,i)}

+ µ̂E,i,

in the primary sample, for i ∈ {1, · · · , NE}. Similarly, the value for the

i-th individual in terms of intermediate outcomes are ŵ
(i)
E (d) and ŵ

(i)
U (d).

Estimators for σ2
Y (·), ρ(·) and ΣM(·), where z⊗2 = zz>,

σ̂2
Y (d) =

1

NE

NE∑
i=1

{v̂(i)E (d)− V̂E(d)}2,

ρ̂(d) =
1

NE

NE∑
i=1

{
v̂
(i)
E (d)− V̂E(d)

}{
ŵ

(i)
E (d)− ŴE(d)

}
,

Σ̂M (d) =
1

NE

NE∑
i=1

{
ŵ

(i)
E (d)− ŴE(d)

}⊗2

+ t
1

NU

NU∑
i=1

{
ŵ

(i)
U (d)− ŴU (d)

}⊗2

.
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CODR based on Finite-Depth Decision Trees

Calibrated Reward of the i-th Individual in the Primary Sample

v̂(i)(d) = v̂
(i)
E (d)− ρ̂(d)>Σ̂−1

M (d){ŵ(i)
E (d)− ŴU (d)}.

The estimators ρ̂(d) and Σ̂−1
M (d) are calculated using two samples based

on (2). To address this difficulty, we propose an iterative algorithm:

• Step 1: Find the ODR based on the primary sample solely, i.e., d̂E ,
as an initial decision rule.

• Step 2: Estimate ρ(·) and ΣM (·) by plugging in d = d̂E .

• Step 3: Search for the optimal decision tree within the class Π1 to
achieve a maximum overall calibrated reward, denoted as d̂(1).

• Step 4: Repeat steps 2 and 3 for k = 1, · · · ,K, by replacing the
previous estimated decision tree d̂(k−1) (d̂(0) = d̂E) with the new
estimated decision tree d̂(k) until it’s convergent or achieves the
maximum number of iterations K.
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E (d)− ŴU (d)}.
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Technical Assumptions

• (A5). The class of decision rules Π is a Vapnik-Chervonenkis Class.

• (A6). The supports are bounded.

• (A7). Rate double robustness for V̂E , M̂E , and M̂U .

• (A8). Margin condition: there exist some constants γ, λ > 0 such that
Pr{0 < |E(YE |XE , AE = 1)− E(YE |XE , AE = 0)| ≤ ξ} = O(ξγ),
where the big-O term is uniform in 0 < ξ ≤ λ.
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Extension of CODR to Heterogeneous Covariates

Let joint dataset as {Xi, Ai,Mi, Ri, RiYi}i=1,··· ,n for n = NE +NU ,
where Ri = 1 if subject i is from primary sample and Ri = 0 if subject i is
from auxiliary sample.

Posterior Sampling Probability

P (Ri = 1|Xi = x,Ai = a,Mi = m)

=
P (Ri = 1)fE(x, a,m)

P (Ri = 1)fE(x, a,m) + P (Ri = 0)fU (x, a,m)
,

(2)

where fE(x, a,m) and fU (x, a,m) are the joint density function of
{XE , AE ,ME} in the primary sample and the joint density function of
{XU , AU ,MU} in the auxiliary sample, respectively.
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Extension of CODR to Heterogeneous Covariates

Estimate the posterior sampling probability
ri(x, a,m) ≡ P (Ri = 1|Xi = x,Ai = a,Mi = m) as r̂i(x, a,m), and
estimate the new propensity score function P (Ai = 1|Xi) as π̂(Xi).

New DR estimators for intermediate outcomes

Ŵ1(d) =
1

n

n∑
i=1

Ri
r̂i{Xi, d(Xi),Mi}

I{Ai = d(Xi)}
Aiπ̂(Xi) + (1−Ai){1− π̂(Xi)}

[Mi − θ̂{Xi, Ai = d(Xi)}]

+ θ̂{Xi, Ai = d(Xi)},

Ŵ0(d) =
1

n

n∑
i=1

(1−Ri)
1− r̂i{Xi, d(Xi),Mi}

I{Ai = d(Xi)}
Aiπ̂(Xi) + (1−Ai){1− π̂(Xi)}

[Mi − θ̂{Xi, Ai = d(Xi)}]

+ θ̂{Xi, Ai = d(Xi)}.
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Simulation Studies

Table 3: Empirical results of the proposed CODR method in comparison to the
original ODR based on the primary sample solely under Scenario 1.

Method (Rule) CODR (dopt) CODR (d̂) ODR (dopt) ODR (d̂E)

NE = 500 1000 500 1000 500 1000 500 1000

True V (·) 0.999 0.958 0.976 0.999 0.978 0.984

V̂ (·) 0.982 0.994 1.015 1.018 0.987 0.999 1.030 1.022

SD{V̂ (·)} 0.119 0.090 0.119 0.090 0.162 0.115 0.162 0.116

E{σ̂} 0.126 0.094 0.125 0.094 0.166 0.117 0.166 0.117

Coverage 97.2% 95.2% 96.4% 96.2% 96.8% 95.0% 96.6% 94.6%

Improved 26.5% 21.7% 26.5% 22.4% / / / /

ρ̂(·) 7.83 7.79 7.84 7.79 / / / /

Σ̂M (·) 10.33 12.45 10.36 12.47 / / / /
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