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Introduction



Personalized Medicine

• A paradigm of medicine tailored to a patient’s characteristics,
increasingly attractive in health care.

• Goal is to optimize the outcome of interest by assigning the right
treatment to the right patients.

• Subgroup identification is needed to ensure the success of
personalized medicine,

• which lead to more well informed clinical decisions and improved
efficiency of the treatment.
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Motivating Example 1: Phase III Trial for Hematological
Malignancies

• There are 599 patients with hematological malignancy enrolled.

• 14 Covariates X related to baseline disease severity and cytogenetic
markers: gender, race, patient’s prior therapy, prognostic score for
myelodysplastic syndromes risk assessment (IPSS)...

• Two treatment A: the experimental therapy plus best supporting care
as treatment 1, and the best supporting care as treatment 0.

• Outcome of interest Y : overall survival time.

• Question: How to identify a largest size of subgroup of patients with
hematological malignancy, who will survive longer by taking the
experimental therapy?
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Motivating Example 2: AIDS Clinical Trials Group
Protocol 175 (ACTG 175) data

• A randomized trial to examine competitive antiretroviral regimens for
HIV-infected subjects.

• 12 Covariates X: age, weight, CD4 count at baseline, hemophilia,
homosexual activity, history of intravenous drug use, Karnofsky
score...

• Treatment A: zidovudine (ZDV) + zalcitabine (ddC) as treatment 0,
and ZDV+didanosine (ddI) as treatment 1.

• Outcome of interest Y : the mean CD4 count (cells/mm3) at 20 ± 5
weeks.

• Question: How to maximize the HIV-infected subjects to be treated
with ZDV+ ddl such that they can recover from the AIDS?
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Subgroup Selection Rule

• Subgroup selection rule (SSR): identify a subgroup of patients who
benefits more from the targeted treatment than other treatments
based on the patients’ baseline covariates;

• Desired Property 1: How to find a SSR that maximizes the size of
the selected group?

• Desired Property 2: Can such a SSR also achieve a pre-specified
clinically desired mean outcome, such as the average treatment effect
(ATE)?

• A subgroup learning approach that selects as many patients with
evidence of a clinically meaningful benefit from treatment as possible
is desired so that more patients can receive the better treatment.
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Related Works: Subgroup Identification

• Data-driven methods for subgroup identification (Lipkovich et al.
2017):

I Song & Pepe (2004): use the selection impact curve to evaluate
treatment policies based on a single baseline covariate;

I Cai et al. (2011): use parametric scoring systems based on multiple
baseline covariates to rank treatment effects and then identified
subgroup using the ranked effect sizes;

I Virtual Twins (VT) method in Foster et al. (2011): first predict the
counterfactual outcome for each individual under two arms, and then
infer the subgroups with an enhanced treatment effect.

• Limitation: focus on subgroup identification but not
subgroup optimization, leading to a greatly reduced number of
selected patients.
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Illustration of Virtual Twins (VT) in Foster et al. (2011)

The VT method yields a smaller and thus less satisfactory subgroup:

Table 1: Evaluation results under the hematological malignancies data.

Desired Effects (Days) δ = 84 δ = 108

Optimal Subgroup Proportion 72% 51%

Virtual Twins Selected Sample Proportion 38.1% (0.043) 12.9% (0.117)

Average Treatment Effect 113.8 (6.2) 151.4 (29.2)

Table 2: Evaluation results under the ACTG 175 data.

Desired Effects (cells/mm3) δ = 0.35 δ = 0.45

Optimal Subgroup Proportion 72% 50%

Virtual Twins Selected Sample Proportion 22.1% (0.063) 10.5% (0.029)

Average Treatment Effect 0.462 (0.043) 0.556 (0.050)
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Subgroup Optimization

• Our Goal: find the optimal SSR to maximize the number of the
selected patients, and in the meantime, achieve the pre-specified
clinically desired mean outcome.

• Two Difficulties:
I A trade-off between the size of the selected subgroup and its ATE: the

more patients selected, the lower ATE we can achieve.
I Solution: constrained optimization.
I Existing optimization approaches with constraints (see e.g., Wang

et al. (2018), Zhou et al. (2021)) used complex decision rules and thus
were hard to interpret.

I Solution: develop tree-based optimal SSR.
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Summary of Our Work

• Derive two equivalent theoretical forms of the optimal SSR based on
the contrast function that describes the treatment-covariates
interaction in the outcome.

• Propose a ConstrAined PolIcy Tree seArch aLgorithm (CAPITAL) to
optimize the subgroup size and achieve the pre-specified clinical
threshold.

• Extend to multiple constraints that penalize the inclusion of patients
with negative treatment effect, and to time to event data using the
restricted mean survival time as the clinically interesting mean
outcome.

• Extensive simulations and real data applications are conducted to
demonstrate the empirical validity of our developed method.
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Problem Formulation



Settings and Assumptions

• Data: (Xi, Ai, Yi), i = 1, · · · , n;
I Xi = [X(1), · · · , X(r)]> ∈ X: r-dimensional covariates.
I Ai ∈ {0, 1}: binary treatment.
I Yi: outcome of interest, the larger the better.

• Potential outcomes Y ∗(a), a ∈ {0, 1}.
• Propensity score function: π(x) = Pr(A = 1|X = x).

A1 Stable Unit Treatment Value Assumption (SUTVA):
Y = AY ?(1) + (1−A)Y ?(0);

A2 Ignorability: {Y ∗(0), Y ∗(1)} ⊥⊥ A | X;

A3 Positivity: 0 < π(x) < 1 for all x ∈ X.

Under [A1] and [A2], define the contrast function:

C(X) ≡ E{Y ∗(1)|X} − E{Y ∗(0)|X} = E(Y |A = 1, X)− E(Y |A = 0, X).

Under [A1] to [A3], C(X) is estimable from the observed data.
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Problem Formulation (in ATE)

• SSR D(X): assigns the patient with baseline covariates X to the
subgroup (D(X) = 1) or not (D(X) = 0).

• Denote the class of the SSR as Π.

• Goal: find the optimal SSR that maximizes the size of the subgroup
and also maintains a desired mean outcome:

max
D∈Π

Pr{D(X) = 1}, (1)

s.t. E{Y ∗(1)|D(X) = 1} − E{Y ∗(0)|D(X) = 1} ≥ δ > 0,

where δ is a pre-specified threshold of clinically meaningful ATE.
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Theoretical Optimal SSR



Connect Threshold δ with Contrast Function C(X)

By [A1] and [A2], the constraint in (1) can be represented by

E{Y ∗(1)|D(X) = 1} − E{Y ∗(0)|D(X) = 1}
= E{Y |A = 1, D(X) = 1} − E{Y |A = 0, D(X) = 1}
= E{C(X)|D(X) = 1} ≥ δ > 0.

Given the pre-specified threshold δ, we denote a cut point η associated
with the contrast function C(X) such that the expectation of the contrast
function C(X) larger than η achieves δ, i.e.,

E{C(X)|C(X) ≥ η} = δ. (2)
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Illustration of the Cut Point

Figure 1: Illustration of the density function of the contrast function C(X) with a
cut point η for the pre-specified threshold δ.

Remark 1: By η, when maximizing the subgroup size, the treatment effect
of each patient is ensured to meet the minimum beneficial effect size.
Remark 2: Optimal SSR should choose the patients whose contrast
functions fall into the yellow area, i.e., whose treatment effects > η.
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Theoretical Optimal SSR

W.l.o.g., consider the class of the theoretical SSRs as

Π ≡ [I{C(X) ≥ t} : t ∈ R] .

Here, for a given t, the SSR I{C(X) ≥ t} selects a patient into the
subgroup if his / her contrast function is larger than t.

Theoretical Optimal SSR

Assuming (A1) and (A2), the optimal subgroup selection rule is

Dopt(x) ≡ I{C(x) ≥ η}, ∀x ∈ X. (3)

Equivalently, the optimal subgroup selection rule is

Dopt(x) ≡ I (EZ∈X[C(Z)I{C(Z) ≥ C(x)}] ≥ δ) ,∀x ∈ X. (4)
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Constrained Policy Tree Search Algorithm



Logic of CAPITAL

• By Theorem 13: the optimal SSR can be found based on the density
of the contrast function.

• The density function is usually unknown: use the estimated contrast
function (Ĉ) for each patient, i.e., the individual treatment effect.

• A constrained policy tree search algorithm (CAPITAL): solve the
optimal SSR

I 1. Transform the constrained optimization in (1) into individual
rewards defined at the patient level, to identify patients more likely to
benefit from treatment.

I 2. Develop a decision tree to partition these patients into the subgroup
based on the policy tree algorithm by Athey & Wager (2021).
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function (Ĉ) for each patient, i.e., the individual treatment effect.

• A constrained policy tree search algorithm (CAPITAL): solve the
optimal SSR

I 1. Transform the constrained optimization in (1) into individual
rewards defined at the patient level, to identify patients more likely to
benefit from treatment.

I 2. Develop a decision tree to partition these patients into the subgroup
based on the policy tree algorithm by Athey & Wager (2021).

Lu, W. (NCSU) CAPITAL Sep 17th, 2021 14 / 36



Logic of CAPITAL

• By Theorem 13: the optimal SSR can be found based on the density
of the contrast function.

• The density function is usually unknown: use the estimated contrast
function (Ĉ) for each patient, i.e., the individual treatment effect.

• A constrained policy tree search algorithm (CAPITAL): solve the
optimal SSR

I 1. Transform the constrained optimization in (1) into individual
rewards defined at the patient level, to identify patients more likely to
benefit from treatment.

I 2. Develop a decision tree to partition these patients into the subgroup
based on the policy tree algorithm by Athey & Wager (2021).

Lu, W. (NCSU) CAPITAL Sep 17th, 2021 14 / 36



Class of SSR: Finite-Depth Decision Trees

For any L ≥ 1, a depth-L decision tree DTL is specified via a splitting
variable X(j) ∈ {X(1), · · · , X(r)}, a threshold ∆L ∈ R, and two
depth-(L− 1) decision trees DTL−1,c1 , and DTL−1,c2 , such that
DTL(x) = DTL−1,c1(x) if x(j) ≤ ∆L, and DT (x) = DTL−1,c2(x)
otherwise. Denote the class of decision trees as ΠDT .

Figure 2: Illustrate of a simple L = 2 decision tree with splitting variables X(1)

and X(2).This decision tree has a mathematical form as I{X(1)X(2) > 0}.
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Define Individual Rewards by Theoretical Optimal SSR

• Define r̂i = Ĉ(Xi)− δ: a patient with larger r̂i is more likely to be
selected into the subgroup; Sort as r̂(1) ≥ r̂(2) ≥ · · · ≥ r̂(n);

• Define the cumulative mean as R̂(i/n) = 1
i

∑i
j=1 r̂(j).

Asymptotic Results of R̂(i/n)

R̂(i/n) −→
p

EZ∈X[C(Z)I{r(α) ≤ C(Z)− δ}]− δ

= EZ∈X{C(Z)|C(Z) ≥ r(α) + δ} − δ,

where r(α) + δ is the upper i/n quantile of the density of C(X) when n
goes to infinity.

Rewark: As long as R̂(i/n) > 0, the selected subgroup satisfies the
condition in (1) by the theoretical optimal SSR in (4) from Theorem 13.
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• Define r̂i = Ĉ(Xi)− δ: a patient with larger r̂i is more likely to be
selected into the subgroup; Sort as r̂(1) ≥ r̂(2) ≥ · · · ≥ r̂(n);

• Define the cumulative mean as R̂(i/n) = 1
i

∑i
j=1 r̂(j).

Asymptotic Results of R̂(i/n)

R̂(i/n) −→
p

EZ∈X[C(Z)I{r(α) ≤ C(Z)− δ}]− δ

= EZ∈X{C(Z)|C(Z) ≥ r(α) + δ} − δ,

where r(α) + δ is the upper i/n quantile of the density of C(X) when n
goes to infinity.

Rewark: As long as R̂(i/n) > 0, the selected subgroup satisfies the
condition in (1) by the theoretical optimal SSR in (4) from Theorem 13.

Lu, W. (NCSU) CAPITAL Sep 17th, 2021 16 / 36



Define Individual Rewards by Theoretical Optimal SSR
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Construct Individual Rewards at Patient Level (1)

To select patients with positive R̂(i/n) and maximize the subgroup size,

we define the reward of the i-th individual based on the sign of R̂(i/n).

Reward 1:

Γ
(1)
i (D) = I{D(Xi) = 1}

[
sign{R̂(Ki)}

]
, (5)

where Ki is the rank of r̂i in the sequence {r̂(i)} or the sequence {R̂(i/n)},
and ‘sign’ is the sign operator.

• Given R̂(Ki) is positive, the reward Γ
(1)
i

I is 1 if the patient is selected to be part of the subgroup;
I and is 0 otherwise.

• Suppose R̂(Ki) is negative, the reward Γ
(1)
i

I is −1 if the patient is selected to be in the subgroup;
I and is 0 otherwise.

• Thus, we can select patients with R̂(Ki) larger than zero.
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Construct Individual Rewards at Patient Level (2)

To include patients who have a lager treatment effect, we propose a
reward based on the value of R̂(Ki) directly.

Reward 2:

Γ
(2)
i (D) = I{D(Xi) = 1}

{
R̂(Ki)

}
. (6)

• The optimal SSR is searched within the decision tree class ΠDT to
maximize the sum of the individual rewards defined in (5) or (6).

• The decision tree allocates each patient to the subgroup or not, and
receives the corresponding rewards.

• Use exhaustive search to estimate SSR that optimizes the total reward
by R package ‘policytree’ (Zhou et al. 2018, Athey & Wager 2021).

• The performances are very similar under these two reward choices.
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Extension to Multiple Constraints

Secondary constraints of interest: the individual treatment effect for
each patient should be greater than some minimum beneficial value.

The optimal SSR under multiple constraints

max
D∈Π

Pr{D(X) = 1}, (7)

s.t. E{Y ∗(1)|D(X) = 1} − E{Y ∗(0)|D(X) = 1} ≥ δ > 0,

s.t. E{Y ∗(1)|D(X) = 1, X = x} − E{Y ∗(0)|D(X) = 1, X = x} ≥ γ, ∀x ∈ X,

where γ is a pre-specified minimum beneficial value, such as γ = 0.

Individual reward under multiple constraints

Γ
(3)
i (D) = I{D(Xi) = 1}

[
R̂(Ki) + λI{Ĉ(Xi) < 0}Ĉ(Xi)

]
, (8)

where λ is the nonnegative penalty parameter that represents the trade-off
between the first and the second constraint.
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]
, (8)

where λ is the nonnegative penalty parameter that represents the trade-off
between the first and the second constraint.

Lu, W. (NCSU) CAPITAL Sep 17th, 2021 19 / 36



Extension to Multiple Constraints

Secondary constraints of interest: the individual treatment effect for
each patient should be greater than some minimum beneficial value.

The optimal SSR under multiple constraints

max
D∈Π

Pr{D(X) = 1}, (7)

s.t. E{Y ∗(1)|D(X) = 1} − E{Y ∗(0)|D(X) = 1} ≥ δ > 0,

s.t. E{Y ∗(1)|D(X) = 1, X = x} − E{Y ∗(0)|D(X) = 1, X = x} ≥ γ, ∀x ∈ X,

where γ is a pre-specified minimum beneficial value, such as γ = 0.

Individual reward under multiple constraints

Γ
(3)
i (D) = I{D(Xi) = 1}

[
R̂(Ki) + λI{Ĉ(Xi) < 0}Ĉ(Xi)
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Extension to Survival Data

Let Ti and Ci denote the survival time and the censoring time.

The optimal SSR for a survival endpoint

max
D∈Π

EI{D(X) = 1}, (9)

s.t. E{min(T, L)|D(X) = 1, A = 1} − E{min(T, L)|D(X) = 1, A = 0} ≥ δ,

where L is the maximum follow up time.

• Let µ0(X) =
∫ L

0 S(t|A = 0)dt and µ1(X) =
∫ L

0 S(t|A = 1)dt:
restricted mean survival time for groups with treatment 0 and 1,
where S(t|A = 0) and S(t|A = 1) are survival functions.

• Denote r̂i = µ̂1(Xi)− µ̂0(Xi)− δ to capture the distance from the
estimated contrast function to the desired difference in restricted
mean survival time δ for the i-th individual.

• Define individual rewards for survival data similarly as in (5) and (6).
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Simulations



Settings

A
iid∼ Bernoulli{0.5}, X(1), · · · , X(r) iid∼ Uniform[−2, 2],

Y = U(X) +AC(X) + ε,
(10)

where U(·) is the baseline function of the outcome and ε
iid∼ N(0, 1). Set

the dimension of covariates as r = 10 and consider

• Scenario 1 {
U(X) = X(1) + 2X(2),

C(X) = X(1).

• Scenario 2 {
U(X) = X(1) + 2X(2),

C(X) = X(1) ×X(2).
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Results for Single Replicate under CAPITAL

Setting: Scenario 2 with δ = 1.0 using reward in (6) for n = 1000.

Figure 3: Upper left panel: for replicate No.1. Upper right Panel: for replicate
No.2. Lower middle Panel: for replicate No.3. Optimal SSR: I{X(1)X(2) > 0}.
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Results for Single Replicate under CAPITAL

Table 3: Results for three particular replicates under Scenario 2 with δ = 1.0 and
n = 1000 (where the optimal subgroup sample proportion is 50%).

Simulation Replicate No.1 Replicate No.2 Replicate No.3

Pr{D̂(X)} 44.5% 49.2% 55.0%

ATE(D̂) 1.11 1.00 0.90

RCD 91.85% 92.01% 94.45%

DT2 Split Variable (Split Value) X(1)(0.12) X(2)(−0.26) X(2)(−0.03)

DT1(Left) Split Variable (Split Value) X(2)(−0.18) X(1)(−0.13) X(1)(0.29)

DT1(Right) Split Variable (Split Value) X(2)(0.28) X(1)(−0.02) X(1)(−0.12)

• Selected sample proportion under estimated SSR: Pr{D̂(X)};
• ATE of estimated SSR: ATE(D̂);

• Rate of making correct subgroup decisions by estimated SSR: RCD.

Lu, W. (NCSU) CAPITAL Sep 17th, 2021 23 / 36



Visualization Selected Subgroup under CAPITAL
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Figure 4: The density function of C(X) within or outside the subgroup under
Scenario 2 with δ = 1.0 and n = 1000. Left panel: for replicate No.1. Middle
Panel: for replicate No.2. Right Panel: for replicate No.3.
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Comparison Studies between CAPITAL and VT

Method r = 10 Scenario 1 Scenario 2

n = 200 n = 500 n = 1000 n = 200 n = 500 n = 1000

CAPITAL δ = 0.7 Proportion 65% 67%

Pr{D̂(X)} 0.62(0.16) 0.63(0.08) 0.65(0.05) 0.42(0.23) 0.51(0.11) 0.56(0.05)

ATE(D̂) 0.66(0.28) 0.72(0.17) 0.69(0.10) 0.72(0.47) 0.96(0.20) 0.86(0.11)

RCD 0.83(0.10) 0.91(0.05) 0.93(0.03) 0.62(0.15) 0.81(0.08) 0.87(0.03)

δ = 1.0 Proportion 50% 50%

Pr{D̂(X)} 0.46(0.16) 0.48(0.09) 0.50(0.06) 0.21(0.17) 0.32(0.12) 0.40(0.06)

ATE(D̂) 0.90(0.27) 1.00(0.15) 0.99(0.11) 0.83(0.63) 1.31(0.27) 1.17(0.11)

RCD 0.84(0.11) 0.91(0.05) 0.94(0.03) 0.62(0.12) 0.79(0.11) 0.88(0.05)

VT δ = 0.7 Proportion 65% 67%

Pr{D̂(X)} 0.31(0.12) 0.34(0.09) 0.35(0.08) 0.15(0.10) 0.19(0.09) 0.22(0.08)

ATE(D̂) 1.11(0.20) 1.27(0.17) 1.30(0.15) 0.85(0.61) 1.46(0.38) 1.53(0.32)

RCD 0.66(0.12) 0.69(0.09) 0.70(0.08) 0.43(0.08) 0.51(0.09) 0.55(0.09)

δ = 1.0 Proportion 50% 50%

Pr{D̂(X)} 0.21(0.13) 0.24(0.10) 0.26(0.07) 0.07(0.06) 0.09(0.07) 0.14(0.07)

ATE(D̂) 1.19(0.21) 1.37(0.18) 1.45(0.13) 1.01(0.74) 1.67(0.49) 1.78(0.38)

RCD 0.70(0.12) 0.74(0.10) 0.76(0.07) 0.54(0.06) 0.59(0.07) 0.64(0.07)
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Evaluation of Multiple Constraints

r = 10 Scenario 1 Scenario 2

n = 200 n = 500 n = 1000 n = 200 n = 500 n = 1000

δ = 0.7 Proportion 65% 67%

λ = 0 Pr{D̂(X)} 0.63(0.16) 0.63(0.08) 0.65(0.05) 0.44(0.24) 0.51(0.11) 0.57(0.06)

ATE(D̂) 0.67(0.30) 0.72(0.17) 0.70(0.11) 0.71(0.48) 0.95(0.20) 0.85(0.11)

RCD 0.84(0.10) 0.91(0.05) 0.93(0.03) 0.62(0.15) 0.81(0.08) 0.87(0.03)

RPI 0.78(0.13) 0.80(0.09) 0.78(0.06) 0.74(0.16) 0.88(0.09) 0.85(0.07)

λ = 0.5 Pr{D̂(X)} 0.55(0.12) 0.56(0.06) 0.57(0.04) 0.39(0.21) 0.48(0.10) 0.53(0.05)

ATE(D̂) 0.83(0.23) 0.86(0.11) 0.86(0.08) 0.77(0.48) 1.01(0.17) 0.93(0.10)

RCD 0.84(0.09) 0.90(0.05) 0.91(0.03) 0.61(0.15) 0.79(0.08) 0.85(0.04)

RPI 0.86(0.11) 0.88(0.07) 0.88(0.05) 0.76(0.15) 0.91(0.07) 0.90(0.05)

λ = 1 Pr{D̂(X)} 0.52(0.11) 0.54(0.05) 0.54(0.04) 0.37(0.20) 0.46(0.09) 0.51(0.05)

ATE(D̂) 0.88(0.20) 0.91(0.11) 0.91(0.07) 0.79(0.48) 1.05(0.16) 0.97(0.10)

RCD 0.83(0.09) 0.88(0.05) 0.89(0.04) 0.60(0.15) 0.78(0.08) 0.83(0.05)

RPI 0.88(0.09) 0.90(0.06) 0.91(0.05) 0.77(0.15) 0.92(0.06) 0.92(0.05)

• Rate of positive individual treatment effect within the selected subgroup: RPI.
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Settings for Survival Data

Define the survival time as T = exp(Y ). Set noises ε for Y as: (i) normal:

ε
iid∼ N(0, 1); (ii) logistic: ε

iid∼ logistic(0, 1); (iii) extreme:

ε
iid∼ log[− log{Uniform(0, 1)}]; and censoring levels as 15% and 25%.

Scenario 3: U(X) = 0.1X(1) + 0.2X(2), C(X) = X(1).
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Figure 5: The density function of E{min(T, L)|A = 1} − E{min(T, L)|A = 0}.
Lu, W. (NCSU) CAPITAL Sep 17th, 2021 27 / 36



Evaluation of Survival Data

Table 4: Empirical results of CAPITAL for the survival data under Scenario 3
(where the optimal subgroup sample proportion is 50%).

Censoring Level 15% Censoring Level 25%

n = 500 n = 1000 n = 500 n = 1000

Case 1 (normal) True δ 1.07 0.86

Pr{D̂(X)} 0.45(0.17) 0.47(0.12) 0.46(0.16) 0.48(0.11)

ATE(D̂) 1.07(0.31) 1.11(0.24) 0.87(0.22) 0.87(0.16)

RCD 0.84(0.11) 0.88(0.07) 0.84(0.09) 0.90(0.06)

Case 2 (logistic) True δ 1.34 0.87

Pr{D̂(X)} 0.57(0.26) 0.56(0.18) 0.52(0.24) 0.52(0.18)

ATE(D̂) 0.94(0.49) 1.06(0.36) 0.63(0.31) 0.75(0.24)

RCD 0.72(0.13) 0.80(0.10) 0.74(0.13) 0.82(0.09)

Case 3 (extreme) True δ 0.73 0.54

Pr{D̂(X)} 0.44(0.18) 0.46(0.12) 0.41(0.18) 0.44(0.12)

ATE(D̂) 0.76(0.21) 0.78(0.15) 0.57(0.15) 0.58(0.11)

RCD 0.84(0.11) 0.89(0.08) 0.83(0.12) 0.88(0.08)
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Application



Data Analysis I: Recall ACTG 175 data

• There are 1046 HIV-infected subjects enrolled in ACTG 175 data;

• 12 Covariates X:
I 1) four continuous variables: age (years), weight (kg), CD4 count

(cells/mm3) at baseline, and CD8 count (cells/mm3) at baseline;
I 2) eight categorical variables: hemophilia (0=no), homosexual activity

(0=no), intravenous drug use (0=no), Karnofsky score (4 levels as 70,
80, 90, and 100), race (0=white), gender (0=female), antiretroviral
history (0=naive), and symptomatic status (0=asymptomatic).

• Binary Treatment A: zidovudine (ZDV) + zalcitabine (ddC) as
treatment 0, and ZDV+didanosine (ddI) as treatment 1;

I 524 patients randomized to treatment 0 and 522 patients to treatment
1, with constant propensity score π(x) ≡ 0.499.

• Outcome of interest Y : the mean CD4 count (cells/mm3) at 20 ± 5
weeks. We normalize Y by its mean and standard deviation.

• Goal: find the optimal SSR that optimizes the size of the selected
subgroup and achieves the desired ATE.
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Data Analysis II: Estimated Contrast Function

• Clinically meaningful ATEs: δ = 0.35 and 0.45 (cells/mm3);
• Corresponding optimal subgroup sample proportions: 72% and 50%.
• Randomly split the whole data, with 70% as a training sample to find

the SSR and 30% as a testing sample to evaluate its performance.
• Difference of the ATE within the subgroup and outside the subgroup:
ATE(D̂)−ATE(D̂c).
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Figure 6: The density of the estimated contrast Ĉ(X) for the ACTG 175.
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Results for ACTG 175 data I: CAPITAL vs VT

Desired Effect (Optimal Proportion) δ = 0.35(72%) δ = 0.45(50%)

CAPITAL Pr{D̂(X)} 92.8% (0.023) 57.4% (0.061)

with λ = 0 ATE(D̂) 0.250 (0.015) 0.313 (0.023)

ATE(D̂)−ATE(D̂c) 0.357 (0.068) 0.205 (0.025)

RPI 83.0% (0.021) 89.2% (0.028)

CAPITAL Pr{D̂(X)} 73.4% (0.094) 40.3% (0.046)

with λ = 2 ATE(D̂) 0.282 (0.023) 0.366 (0.025)

ATE(D̂)−ATE(D̂c) 0.222 (0.038) 0.235 (0.028)

RPI 86.1% (0.029) 95.0% (0.024)

CAPITAL Pr{D̂(X)} 35.6% (0.035) 32.1% (0.043)

with λ = 20 ATE(D̂) 0.381 (0.021) 0.391 (0.023)

ATE(D̂)−ATE(D̂c) 0.242 (0.025) 0.244 (0.026)

RPI 95.9% (0.017) 96.5% (0.017)

Virtual Twins Pr{D̂(X)} 22.1% (0.063) 10.5% (0.029)

ATE(D̂) 0.462 (0.043) 0.556 (0.050)

ATE(D̂)−ATE(D̂c) 0.302 (0.037) 0.368 (0.047)

RPI 97.8% (0.019) 99.6% (0.010)
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Results for ACTG 175 data II: Visualization for the
Estimated SSR

Figure 7: The estimated optimal SSR using CAPITAL under the ACTG 175 data.
Left panel: for δ = 0.35 (cells/mm3). Right Panel: for δ = 0.45 (cells/mm3).
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Data Analysis: Recall Hematological Malignancies Data

• There are 599 patients enrolled. Exclude 7 with missing records.

• 14 Covariates X:
I 1) 12 categorical variables: gender (1=Male), race (1= Asian,

2=Black, 3=White), Cytogenetic markers 1 through 9 (0=Absent),
patient’s prior therapy (1=Failure, 2=Progression, 3=Relapse);

I 2). 2 ordinal variables: Cytogenetic category (1=Very good, 2=Good,
3 =Intermediate, 4=Poor, 5=Very poor), and prognostic score for
myelodysplastic syndromes risk assessment (IPSS) (1=Low,
2=Intermediate, 3=High, 4=Very high).

• Binary treatment A: the experimental therapy plus best supporting
care as treatment 1, and the best supporting care as treatment 0.

I 301 patients receiving treatment 1 and 291 receiving treatment 0.

• Outcome of interest Y : overall survival time (days).

• Goal: find the optimal SSR that maximizes the size of the selected
group while achieving the desired ATE in the survival data.
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Data Analysis II: Estimated Contrast Function

• Clinically meaningful ATEs: δ = 84 and 108 (days);

• Corresponding optimal subgroup sample proportions: 72% and 51%.
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Figure 8: The density of the estimated contrast Ĉ(X) for the hematological
malignancies data.
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Results for Hematological Data I: CAPITAL vs VT

Desired Effect (Optimal Proportion) δ = 84(72%) δ = 108(51%)

CAPITAL Pr{D̂(X)} 76.7% (0.030) 49.5% (0.061)

with λ = 0 ATE(D̂) 71.6 (5.2) 85.2 (10.6)

ATE(D̂)−ATE(D̂c) 117.9 (12.7) 80.8 (12.5)

RPI 88.4% (0.030) 92.2% (0.029)

CAPITAL Pr{D̂(X)} 75.1% (0.030) 40.0% (0.063)

with λ = 0.01 ATE(D̂) 72.3 (4.8) 102.3 (11.3)

ATE(D̂)−ATE(D̂c) 113.5 (12.3) 96.3 (12.4)

RPI 88.8% (0.027) 95.4% (0.031)

CAPITAL Pr{D̂(X)} 74.1% (0.031) 36.7% (0.063)

with λ = 0.02 ATE(D̂) 72.9 (4.7) 106.7 (10.7)

ATE(D̂)−ATE(D̂c) 111.2 (12.4) 98.5 (10.6)

RPI 88.9% (0.026) 96.3% (0.029)

Virtual Twins Pr{D̂(X)} 38.1% (0.043) 12.9% (0.117)

ATE(D̂) 113.8 (6.2) 151.4 (29.2)

ATE(D̂)−ATE(D̂c) 112.4 (7.9) 121.7 (21.4)

RPI 99.5% (0.010) 99.9% (0.003)
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Results for Hematological Data II: Visualization for the
Estimated SSR

Figure 9: The estimated optimal SSR using CAPITAL under tthe hematological
malignancies data. Left panel: for δ = 84 (days). Right Panel: for δ = 108
(days).
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