Optimal Subgroup Identification via Constrained Policy Tree Search

Wenbin Lu

Department of Statistics, North Carolina State University

Sep 17th, 2021

Outline

Introduction

- 2 Problem Formulation
- Theoretical Optimal SSR
- 4 Constrained Policy Tree Search Algorithm

5 Simulations

6 Application

Introduction

- A paradigm of medicine tailored to a <u>patient's characteristics</u>, increasingly attractive in health care.
- Goal is to optimize the outcome of interest by assigning the <u>right</u> treatment to the right patients.
- Subgroup identification is needed to ensure the success of personalized medicine,
- which lead to more well informed clinical decisions and improved efficiency of the treatment.

- A paradigm of medicine tailored to a <u>patient's characteristics</u>, increasingly attractive in health care.
- **Goal** is to optimize the outcome of interest by assigning the <u>right</u> treatment to the right patients.
- Subgroup identification is needed to ensure the success of personalized medicine,
- which lead to more well informed clinical decisions and improved efficiency of the treatment.

- A paradigm of medicine tailored to a <u>patient's characteristics</u>, increasingly attractive in health care.
- **Goal** is to optimize the outcome of interest by assigning the <u>right</u> treatment to the right patients.
- **Subgroup identification** is needed to ensure the success of personalized medicine,
- which lead to more well informed clinical decisions and improved efficiency of the treatment.

- A paradigm of medicine tailored to a <u>patient's characteristics</u>, increasingly attractive in health care.
- **Goal** is to optimize the outcome of interest by assigning the <u>right</u> treatment to the right patients.
- **Subgroup identification** is needed to ensure the success of personalized medicine,
- which lead to more well informed clinical decisions and improved efficiency of the treatment.

• There are 599 patients with hematological malignancy enrolled.

- <u>14 Covariates X</u> related to baseline disease severity and cytogenetic markers: gender, race, patient's prior therapy, prognostic score for myelodysplastic syndromes risk assessment (IPSS)...
- <u>Two treatment A</u>: the experimental therapy plus best supporting care as treatment 1, and the best supporting care as treatment 0.
- Outcome of interest Y: overall survival time.
- <u>Question</u>: How to identify a largest size of subgroup of patients with hematological malignancy, who will survive longer by taking the experimental therapy?

- There are 599 patients with hematological malignancy enrolled.
- <u>14 Covariates X</u> related to baseline disease severity and cytogenetic markers: gender, race, patient's prior therapy, prognostic score for myelodysplastic syndromes risk assessment (IPSS)...
- <u>Two treatment A</u>: the experimental therapy plus best supporting care as treatment 1, and the best supporting care as treatment 0.
- Outcome of interest Y: overall survival time.
- <u>Question</u>: How to identify a largest size of subgroup of patients with hematological malignancy, who will survive longer by taking the experimental therapy?

- There are 599 patients with hematological malignancy enrolled.
- <u>14 Covariates X</u> related to baseline disease severity and cytogenetic markers: gender, race, patient's prior therapy, prognostic score for myelodysplastic syndromes risk assessment (IPSS)...
- <u>Two treatment A</u>: the experimental therapy plus best supporting care as treatment 1, and the best supporting care as treatment 0.

<u>Outcome of interest Y:</u> overall survival time.

 <u>Question</u>: How to identify a largest size of subgroup of patients with hematological malignancy, who will survive longer by taking the experimental therapy?

- There are 599 patients with hematological malignancy enrolled.
- <u>14 Covariates X</u> related to baseline disease severity and cytogenetic markers: gender, race, patient's prior therapy, prognostic score for myelodysplastic syndromes risk assessment (IPSS)...
- <u>Two treatment A</u>: the experimental therapy plus best supporting care as treatment 1, and the best supporting care as treatment 0.
- Outcome of interest Y: overall survival time.
- <u>Question</u>: How to identify a largest size of subgroup of patients with hematological malignancy, who will survive longer by taking the experimental therapy?

- There are 599 patients with hematological malignancy enrolled.
- <u>14 Covariates X</u> related to baseline disease severity and cytogenetic markers: gender, race, patient's prior therapy, prognostic score for myelodysplastic syndromes risk assessment (IPSS)...
- <u>Two treatment A</u>: the experimental therapy plus best supporting care as treatment 1, and the best supporting care as treatment 0.
- Outcome of interest Y: overall survival time.
- <u>Question</u>: How to identify a largest size of subgroup of patients with hematological malignancy, who will survive longer by taking the experimental therapy?

- A randomized trial to examine competitive antiretroviral regimens for HIV-infected subjects.
- <u>12 Covariates X</u>: age, weight, CD4 count at baseline, hemophilia, homosexual activity, history of intravenous drug use, Karnofsky score...
- <u>Treatment A</u>: zidovudine (ZDV) + zalcitabine (ddC) as treatment 0, and ZDV+didanosine (ddl) as treatment 1.
- <u>Outcome of interest Y</u>: the mean CD4 count (cells/mm3) at 20 ± 5 weeks.
- <u>Question</u>: How to maximize the HIV-infected subjects to be treated with ZDV+ ddl such that they can recover from the AIDS?

- A randomized trial to examine competitive antiretroviral regimens for HIV-infected subjects.
- <u>12 Covariates X</u>: age, weight, CD4 count at baseline, hemophilia, homosexual activity, history of intravenous drug use, Karnofsky score...
- <u>Treatment A</u>: zidovudine (ZDV) + zalcitabine (ddC) as treatment 0, and ZDV+didanosine (ddl) as treatment 1.
- <u>Outcome of interest Y</u>: the mean CD4 count (cells/mm3) at 20 ± 5 weeks.
- <u>Question</u>: How to maximize the HIV-infected subjects to be treated with ZDV+ ddl such that they can recover from the AIDS?

- A randomized trial to examine competitive antiretroviral regimens for HIV-infected subjects.
- <u>12 Covariates X</u>: age, weight, CD4 count at baseline, hemophilia, homosexual activity, history of intravenous drug use, Karnofsky score...
- <u>Treatment A</u>: zidovudine (ZDV) + zalcitabine (ddC) as treatment 0, and ZDV+didanosine (ddI) as treatment 1.
- <u>Outcome of interest Y</u>: the mean CD4 count (cells/mm3) at 20 ± 5 weeks.
- <u>Question</u>: How to maximize the HIV-infected subjects to be treated with ZDV+ ddl such that they can recover from the AIDS?

- A randomized trial to examine competitive antiretroviral regimens for HIV-infected subjects.
- <u>12 Covariates X</u>: age, weight, CD4 count at baseline, hemophilia, homosexual activity, history of intravenous drug use, Karnofsky score...
- <u>Treatment A</u>: zidovudine (ZDV) + zalcitabine (ddC) as treatment 0, and ZDV+didanosine (ddI) as treatment 1.
- <u>Outcome of interest Y</u>: the mean CD4 count (cells/mm3) at 20 ± 5 weeks.
- <u>Question</u>: How to maximize the HIV-infected subjects to be treated with ZDV+ ddl such that they can recover from the AIDS?

- A randomized trial to examine competitive antiretroviral regimens for HIV-infected subjects.
- <u>12 Covariates X</u>: age, weight, CD4 count at baseline, hemophilia, homosexual activity, history of intravenous drug use, Karnofsky score...
- <u>Treatment A</u>: zidovudine (ZDV) + zalcitabine (ddC) as treatment 0, and ZDV+didanosine (ddI) as treatment 1.
- <u>Outcome of interest Y</u>: the mean CD4 count (cells/mm3) at 20 ± 5 weeks.
- <u>Question</u>: How to maximize the HIV-infected subjects to be treated with ZDV+ ddl such that they can recover from the AIDS?

- Subgroup selection rule (SSR): identify a subgroup of patients who benefits more from the targeted treatment than other treatments based on the patients' baseline covariates;
- Desired Property 1: How to find a SSR that maximizes the size of the selected group?
- Desired Property 2: Can such a SSR also achieve a pre-specified clinically desired mean outcome, such as the average treatment effect (ATE)?
- A subgroup learning approach that selects as many patients with evidence of a clinically meaningful benefit from treatment as possible is desired so that more patients can receive the better treatment.

- Subgroup selection rule (SSR): identify a subgroup of patients who benefits more from the targeted treatment than other treatments based on the patients' baseline covariates;
- **Desired Property 1**: How to find <u>a SSR</u> that maximizes the size of the selected group?
- Desired Property 2: Can such a SSR also achieve a pre-specified clinically desired mean outcome, such as the average treatment effect (ATE)?
- A subgroup learning approach that selects as many patients with evidence of a clinically meaningful benefit from treatment as possible is desired so that more patients can receive the better treatment.

- Subgroup selection rule (SSR): identify a subgroup of patients who benefits more from the targeted treatment than other treatments based on the patients' baseline covariates;
- **Desired Property 1**: How to find <u>a SSR</u> that maximizes the size of the selected group?
- **Desired Property 2**: Can such a SSR also achieve a pre-specified clinically desired mean outcome, such as the average treatment effect (ATE)?
- A subgroup learning approach that selects as many patients with evidence of a clinically meaningful benefit from treatment as possible is desired so that more patients can receive the better treatment.

- Subgroup selection rule (SSR): identify a subgroup of patients who benefits more from the targeted treatment than other treatments based on the patients' baseline covariates;
- **Desired Property 1**: How to find <u>a SSR</u> that maximizes the size of the selected group?
- **Desired Property 2**: Can such a SSR also achieve a pre-specified clinically desired mean outcome, such as the average treatment effect (ATE)?
- A subgroup learning approach that selects as many patients with evidence of a clinically meaningful benefit from treatment as possible is desired so that more patients can receive the better treatment.

- Data-driven methods for subgroup identification (Lipkovich et al. 2017):
 - Song & Pepe (2004): use the selection impact curve to evaluate treatment policies based on a single baseline covariate;
 - Cai et al. (2011): use parametric scoring systems based on multiple baseline covariates to rank treatment effects and then identified subgroup using the ranked effect sizes;
 - Virtual Twins (VT) method in Foster et al. (2011): first predict the counterfactual outcome for each individual under two arms, and then infer the subgroups with an enhanced treatment effect.
- Limitation: focus on subgroup identification but not subgroup optimization, leading to a greatly reduced number of selected patients.

- Data-driven methods for subgroup identification (Lipkovich et al. 2017):
 - Song & Pepe (2004): use the selection impact curve to evaluate treatment policies based on a single baseline covariate;
 - Cai et al. (2011): use parametric scoring systems based on multiple baseline covariates to rank treatment effects and then identified subgroup using the ranked effect sizes;
 - Virtual Twins (VT) method in Foster et al. (2011): first predict the counterfactual outcome for each individual under two arms, and then infer the subgroups with an enhanced treatment effect.
- Limitation: focus on subgroup identification but not subgroup optimization, leading to a greatly reduced number of selected patients.

- Data-driven methods for subgroup identification (Lipkovich et al. 2017):
 - Song & Pepe (2004): use the selection impact curve to evaluate treatment policies based on a single baseline covariate;
 - Cai et al. (2011): use parametric scoring systems based on multiple baseline covariates to rank treatment effects and then identified subgroup using the ranked effect sizes;
 - Virtual Twins (VT) method in Foster et al. (2011): first predict the counterfactual outcome for each individual under two arms, and then infer the subgroups with an enhanced treatment effect.
- Limitation: focus on subgroup identification but not subgroup optimization, leading to a greatly reduced number of selected patients.

- Data-driven methods for subgroup identification (Lipkovich et al. 2017):
 - Song & Pepe (2004): use the selection impact curve to evaluate treatment policies based on a single baseline covariate;
 - Cai et al. (2011): use parametric scoring systems based on multiple baseline covariates to rank treatment effects and then identified subgroup using the ranked effect sizes;
 - Virtual Twins (VT) method in Foster et al. (2011): first predict the counterfactual outcome for each individual under two arms, and then infer the subgroups with an enhanced treatment effect.
- Limitation: focus on subgroup identification but not subgroup optimization, leading to a greatly reduced number of selected patients.

- Data-driven methods for subgroup identification (Lipkovich et al. 2017):
 - Song & Pepe (2004): use the selection impact curve to evaluate treatment policies based on a single baseline covariate;
 - Cai et al. (2011): use parametric scoring systems based on multiple baseline covariates to rank treatment effects and then identified subgroup using the ranked effect sizes;
 - Virtual Twins (VT) method in Foster et al. (2011): first predict the counterfactual outcome for each individual under two arms, and then infer the subgroups with an enhanced treatment effect.
- Limitation: focus on subgroup identification but not subgroup optimization, leading to a greatly reduced number of selected patients.

Illustration of Virtual Twins (VT) in Foster et al. (2011)

The VT method yields a smaller and thus less satisfactory subgroup:

Table 1: Evaluation results under the hematological malignancies data.

	Desired Effects (Days)	$\delta = 84$	$\delta = 108$
	Optimal Subgroup Proportion	72%	51%
Virtual Twins	Selected Sample Proportion	38.1% (0.043)	12.9% (0.117)
	Average Treatment Effect	113.8 (6.2)	151.4 (29.2)

Table 2: Evaluation results under the ACTG 175 data.

	Desired Effects (cells/mm3)	$\delta = 0.35$	$\delta = 0.45$
	Optimal Subgroup Proportion	72%	50%
Virtual Twins	Selected Sample Proportion		10.5% (0.029)
	Average Treatment Effect	0.462 (0.043)	

Illustration of Virtual Twins (VT) in Foster et al. (2011)

The VT method yields a smaller and thus less satisfactory subgroup:

Table 1: Evaluation results under the hematological malignancies data.

	Desired Effects (Days)	$\delta = 84$	$\delta = 108$
	Optimal Subgroup Proportion	72%	51%
Virtual Twins	Selected Sample Proportion	38.1% (0.043)	12.9% (0.117)
	Average Treatment Effect	113.8 (6.2)	151.4 (29.2)

Table 2: Evaluation results under the ACTG 175 data.

	Desired Effects (cells/mm3)	$\delta = 0.35$	$\delta = 0.45$
	Optimal Subgroup Proportion	72%	50%
Virtual Twins	Selected Sample Proportion		10.5% (0.029)
	Average Treatment Effect	0.462 (0.043)	

Illustration of Virtual Twins (VT) in Foster et al. (2011)

The VT method yields a smaller and thus less satisfactory subgroup:

Table 1: Evaluation results under the hematological malignancies data.

	Desired Effects (Days)	$\delta = 84$	$\delta = 108$
	Optimal Subgroup Proportion	72%	51%
Virtual Twins	Selected Sample Proportion	38.1% (0.043)	12.9% (0.117)
	Average Treatment Effect	113.8 (6.2)	151.4 (29.2)

Table 2: Evaluation results under the ACTG 175 data.

	Desired Effects (cells/mm3)	$\delta = 0.35$	$\delta = 0.45$
	Optimal Subgroup Proportion	72%	50%
Virtual Twins	Selected Sample Proportion	22.1% (0.063)	10.5% (0.029)
-	Average Treatment Effect	0.462 (0.043)	0.556 (0.050)

- **Our Goal:** find the optimal SSR to <u>maximize</u> the number of the selected patients, and in the meantime, <u>achieve</u> the pre-specified clinically desired mean outcome.
- Two Difficulties:
 - A trade-off between the size of the selected subgroup and its ATE: the more patients selected, the lower ATE we can achieve.
 - Solution: constrained optimization.
 - Existing optimization approaches with constraints (see e.g., Wang et al. (2018), Zhou et al. (2021)) used complex decision rules and thus were hard to interpret.
 - Solution: develop tree-based optimal SSR.

- ► A trade-off between the size of the selected subgroup and its ATE: the more patients selected, the lower ATE we can achieve.
- Solution: constrained optimization.
- Existing optimization approaches with constraints (see e.g., Wang et al. (2018), Zhou et al. (2021)) used complex decision rules and thus were hard to interpret.
- Solution: develop tree-based optimal SSR.

- A trade-off between the size of the selected subgroup and its ATE: the more patients selected, the lower ATE we can achieve.
- Solution: constrained optimization.
- Existing optimization approaches with constraints (see e.g., Wang et al. (2018), Zhou et al. (2021)) used complex decision rules and thus were hard to interpret.
- Solution: develop tree-based optimal SSR.

- A trade-off between the size of the selected subgroup and its ATE: the more patients selected, the lower ATE we can achieve.
- Solution: constrained optimization.
- Existing optimization approaches with constraints (see e.g., Wang et al. (2018), Zhou et al. (2021)) used complex decision rules and thus were hard to interpret.
- Solution: develop tree-based optimal SSR.

- ► A trade-off between the size of the selected subgroup and its ATE: the more patients selected, the lower ATE we can achieve.
- Solution: constrained optimization.
- Existing optimization approaches with constraints (see e.g., Wang et al. (2018), Zhou et al. (2021)) used complex decision rules and thus were hard to interpret.

```
Solution: develop tree-based optimal SSR.
```

- ► A trade-off between the size of the selected subgroup and its ATE: the more patients selected, the lower ATE we can achieve.
- Solution: constrained optimization.
- Existing optimization approaches with constraints (see e.g., Wang et al. (2018), Zhou et al. (2021)) used complex decision rules and thus were hard to interpret.
- Solution: develop tree-based optimal SSR.

Summary of Our Work

- Derive two equivalent theoretical forms of the optimal SSR based on the contrast function that describes the treatment-covariates interaction in the outcome.
- Propose a ConstrAined Pollcy Tree seArch aLgorithm (CAPITAL) to optimize the subgroup size and achieve the pre-specified clinical threshold.
- Extend to <u>multiple constraints</u> that penalize the inclusion of patients with negative treatment effect, and to <u>time to event data</u> using the restricted mean survival time as the clinically interesting mean outcome.
- Extensive simulations and real data applications are conducted to demonstrate the empirical validity of our developed method.

Summary of Our Work

- Derive two equivalent theoretical forms of the optimal SSR based on the contrast function that describes the treatment-covariates interaction in the outcome.
- Propose a <u>ConstrAined Policy Tree seArch algorithm</u> (CAPITAL) to optimize the subgroup size and achieve the pre-specified clinical threshold.
- Extend to <u>multiple constraints</u> that penalize the inclusion of patients with negative treatment effect, and to <u>time to event data</u> using the restricted mean survival time as the clinically interesting mean outcome.
- Extensive simulations and real data applications are conducted to demonstrate the empirical validity of our developed method.

Summary of Our Work

- Derive two equivalent theoretical forms of the optimal SSR based on the contrast function that describes the treatment-covariates interaction in the outcome.
- Propose a <u>ConstrAined Pollcy Tree seArch aLgorithm</u> (CAPITAL) to optimize the subgroup size and achieve the pre-specified clinical threshold.
- Extend to <u>multiple constraints</u> that penalize the inclusion of patients with negative treatment effect, and to <u>time to event data</u> using the restricted mean survival time as the clinically interesting mean outcome.
- Extensive simulations and real data applications are conducted to demonstrate the empirical validity of our developed method.

Summary of Our Work

- Derive two equivalent theoretical forms of the optimal SSR based on the contrast function that describes the treatment-covariates interaction in the outcome.
- Propose a <u>ConstrAined Pollcy Tree seArch aLgorithm</u> (CAPITAL) to optimize the subgroup size and achieve the pre-specified clinical threshold.
- Extend to <u>multiple constraints</u> that penalize the inclusion of patients with negative treatment effect, and to <u>time to event data</u> using the restricted mean survival time as the clinically interesting mean outcome.
- Extensive simulations and real data applications are conducted to demonstrate the empirical validity of our developed method.

Problem Formulation

• Data:
$$(X_i, A_i, Y_i)$$
, $i = 1, \cdots, n$;

- $X_i = [X^{(1)}, \cdots, X^{(r)}]^\top \in \mathbb{X}$: r-dimensional covariates.
- $A_i \in \{0,1\}$: binary treatment.
- ▶ *Y_i*: outcome of interest, the larger the better.
- Potential outcomes $Y^*(a)$, $a \in \{0, 1\}$.
- Propensity score function: $\pi(x) = \Pr(A = 1 | X = x)$.
- A1 Stable Unit Treatment Value Assumption (SUTVA): $Y = AY^{*}(1) + (1 - A)Y^{*}(0);$
- A2 Ignorability: $\{Y^*(0), Y^*(1)\} \perp A \mid X;$
- A3 Positivity: $0 < \pi(x) < 1$ for all $x \in \mathbb{X}$.

Under [A1] and [A2], define the contrast function:

 $C(X) \equiv \mathsf{E}\{Y^*(1)|X\} - \mathsf{E}\{Y^*(0)|X\} = \mathsf{E}(Y|A=1,X) - \mathsf{E}(Y|A=0,X).$

• Data:
$$(X_i, A_i, Y_i)$$
, $i = 1, \cdots, n$;

- X_i = [X⁽¹⁾, · · · , X^(r)]^T ∈ X: r-dimensional covariates.
- $A_i \in \{0,1\}$: binary treatment.
- Y_i : outcome of interest, the larger the better.
- Potential outcomes $Y^*(a)$, $a \in \{0, 1\}$.
- Propensity score function: $\pi(x) = \Pr(A = 1 | X = x)$.
- A1 Stable Unit Treatment Value Assumption (SUTVA): $Y = AY^{*}(1) + (1 - A)Y^{*}(0);$
- A2 Ignorability: $\{Y^*(0), Y^*(1)\} \perp A \mid X;$
- A3 Positivity: $0 < \pi(x) < 1$ for all $x \in \mathbb{X}$.

Under [A1] and [A2], define the contrast function:

 $C(X) \equiv \mathsf{E}\{Y^*(1)|X\} - \mathsf{E}\{Y^*(0)|X\} = \mathsf{E}(Y|A=1,X) - \mathsf{E}(Y|A=0,X).$

• Data:
$$(X_i, A_i, Y_i)$$
, $i = 1, \cdots, n$;

- X_i = [X⁽¹⁾, · · · , X^(r)]^T ∈ X: r-dimensional covariates.
- $A_i \in \{0,1\}$: binary treatment.
- Y_i : outcome of interest, the larger the better.
- Potential outcomes $Y^*(a)$, $a \in \{0, 1\}$.
- Propensity score function: $\pi(x) = \Pr(A = 1 | X = x)$.
- A1 Stable Unit Treatment Value Assumption (SUTVA): $Y = AY^{*}(1) + (1 - A)Y^{*}(0);$
- A2 Ignorability: $\{Y^*(0), Y^*(1)\} \perp A \mid X;$
- A3 Positivity: $0 < \pi(x) < 1$ for all $x \in \mathbb{X}$.

Under [A1] and [A2], define the contrast function:

 $C(X) \equiv \mathsf{E}\{Y^*(1)|X\} - \mathsf{E}\{Y^*(0)|X\} = \mathsf{E}(Y|A=1,X) - \mathsf{E}(Y|A=0,X).$

• Data:
$$(X_i, A_i, Y_i)$$
, $i = 1, \cdots, n$;

- X_i = [X⁽¹⁾, · · · , X^(r)]^T ∈ X: r-dimensional covariates.
- $A_i \in \{0,1\}$: binary treatment.
- Y_i : outcome of interest, the larger the better.
- Potential outcomes $Y^*(a)$, $a \in \{0, 1\}$.
- Propensity score function: $\pi(x) = \Pr(A = 1 | X = x)$.
- A1 Stable Unit Treatment Value Assumption (SUTVA): $Y = AY^{*}(1) + (1 - A)Y^{*}(0);$
- A2 Ignorability: $\{Y^*(0), Y^*(1)\} \perp A \mid X;$
- A3 Positivity: $0 < \pi(x) < 1$ for all $x \in \mathbb{X}$.

Under [A1] and [A2], define the contrast function:

 $C(X) \equiv \mathsf{E}\{Y^*(1)|X\} - \mathsf{E}\{Y^*(0)|X\} = \mathsf{E}(Y|A = 1, X) - \mathsf{E}(Y|A = 0, X).$

Problem Formulation (in ATE)

- SSR D(X): assigns the patient with baseline covariates X to the subgroup (D(X) = 1) or not (D(X) = 0).
- Denote the class of the SSR as $\Pi.$
- **Goal**: find the optimal SSR that maximizes the size of the subgroup and also maintains a desired mean outcome:

$$\max_{\substack{D \in \Pi}} \quad \Pr\{D(X) = 1\},$$
(1)
s.t. $\mathsf{E}\{Y^*(1)|D(X) = 1\} - \mathsf{E}\{Y^*(0)|D(X) = 1\} \ge \delta > 0,$

where δ is a pre-specified threshold of clinically meaningful ATE.

Problem Formulation (in ATE)

- SSR D(X): assigns the patient with baseline covariates X to the subgroup (D(X) = 1) or not (D(X) = 0).
- Denote the class of the SSR as $\Pi.$
- **Goal**: find the optimal SSR that maximizes the size of the subgroup and also maintains a desired mean outcome:

$$\max_{D \in \Pi} \quad \Pr\{D(X) = 1\},$$
(1)
s.t. $\mathsf{E}\{Y^*(1)|D(X) = 1\} - \mathsf{E}\{Y^*(0)|D(X) = 1\} \ge \delta > 0,$

where δ is a pre-specified threshold of clinically meaningful ATE.

Theoretical Optimal SSR

Connect Threshold δ with Contrast Function C(X)

By [A1] and [A2], the constraint in (1) can be represented by

$$\begin{split} \mathsf{E}\{Y^*(1)|D(X) &= 1\} - \mathsf{E}\{Y^*(0)|D(X) = 1\} \\ &= \mathsf{E}\{Y|A = 1, D(X) = 1\} - \mathsf{E}\{Y|A = 0, D(X) = 1\} \\ &= \mathsf{E}\{C(X)|D(X) = 1\} \geq \delta > 0. \end{split}$$

Given the pre-specified threshold δ , we denote a cut point η associated with the contrast function C(X) such that the expectation of the contrast function C(X) larger than η achieves δ , i.e.,

$$\mathsf{E}\{C(X)|C(X) \ge \eta\} = \delta.$$
 (2)

Illustration of the Cut Point

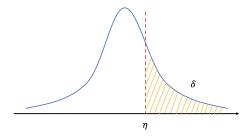


Figure 1: Illustration of the density function of the contrast function C(X) with a cut point η for the pre-specified threshold δ .

Remark 1: By η , when maximizing the subgroup size, the treatment effect of each patient is ensured to meet the minimum beneficial effect size. **Remark 2:** Optimal SSR should choose the patients whose contrast functions fall into the yellow area, i.e., whose treatment effects $> \eta$.

Illustration of the Cut Point

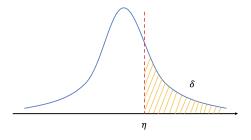


Figure 1: Illustration of the density function of the contrast function C(X) with a cut point η for the pre-specified threshold δ .

Remark 1: By η , when maximizing the subgroup size, the treatment effect of each patient is ensured to meet the minimum beneficial effect size. **Remark 2:** Optimal SSR should choose the patients whose contrast functions fall into the yellow area, i.e., whose treatment effects > η .

Theoretical Optimal SSR

W.I.o.g., consider the class of the theoretical SSRs as

 $\Pi \equiv \left[\mathbb{I}\{C(X) \ge t\} : t \in \mathbb{R} \right].$

Here, for a given t, the SSR $\mathbb{I}\{C(X) \ge t\}$ selects a patient into the subgroup if his / her contrast function is larger than t.

Theoretical Optimal SSR

Assuming (A1) and (A2), the optimal subgroup selection rule is

$$D^{opt}(x) \equiv \mathbb{I}\{C(x) \ge \eta\}, \forall x \in \mathbb{X}.$$
(3)

Equivalently, the optimal subgroup selection rule is

$$D^{opt}(x) \equiv \mathbb{I}\left(\mathsf{E}_{Z \in \mathbb{X}}[C(Z)\mathbb{I}\{C(Z) \ge C(x)\}\right] \ge \delta\right), \forall x \in \mathbb{X}.$$
(4)

Constrained Policy Tree Search Algorithm

Logic of CAPITAL

- By Theorem 13: the optimal SSR can be found based on the density of the contrast function.
- The density function is usually <u>unknown</u>: use the estimated contrast function (\widehat{C}) for each patient, i.e., the individual treatment effect.
- A constrained policy tree search algorithm (CAPITAL): solve the optimal SSR
 - ▶ 1. Transform the constrained optimization in (1) into individual rewards defined at the patient level, to identify patients more likely to benefit from treatment.
 - ▶ 2. Develop a decision tree to partition these patients into the subgroup based on the policy tree algorithm by Athey & Wager (2021).

Logic of CAPITAL

- By Theorem 13: the optimal SSR can be found based on the density of the contrast function.
- The density function is usually <u>unknown</u>: use the estimated contrast function (\hat{C}) for each patient, i.e., the individual treatment effect.
- A constrained policy tree search algorithm (CAPITAL): solve the optimal SSR
 - I. Transform the constrained optimization in (1) into individual rewards defined at the patient level, to identify patients more likely to benefit from treatment.
 - ▶ 2. Develop a decision tree to partition these patients into the subgroup based on the policy tree algorithm by Athey & Wager (2021).

Logic of CAPITAL

- By Theorem 13: the optimal SSR can be found based on the density of the contrast function.
- The density function is usually <u>unknown</u>: use the estimated contrast function (\hat{C}) for each patient, i.e., the individual treatment effect.
- A constrained policy tree search algorithm (CAPITAL): solve the optimal SSR
 - Transform the constrained optimization in (1) into individual rewards defined at the patient level, to identify patients more likely to benefit from treatment.
 - 2. Develop a decision tree to partition these patients into the subgroup based on the policy tree algorithm by Athey & Wager (2021).

Class of SSR: Finite-Depth Decision Trees

For any $L \geq 1$, a depth-L decision tree DT_L is specified via a splitting variable $X^{(j)} \in \{X^{(1)}, \cdots, X^{(r)}\}$, a threshold $\Delta_L \in \mathbb{R}$, and two depth-(L-1) decision trees DT_{L-1,c_1} , and DT_{L-1,c_2} , such that $DT_L(x) = DT_{L-1,c_1}(x)$ if $x^{(j)} \leq \Delta_L$, and $DT(x) = DT_{L-1,c_2}(x)$ otherwise. Denote the class of decision trees as Π_{DT} .

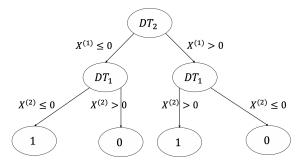


Figure 2: Illustrate of a simple L = 2 decision tree with splitting variables $X^{(1)}$ and $X^{(2)}$. This decision tree has a mathematical form as $\mathbb{I}\{X^{(1)}X^{(2)} > 0\}$.

Define Individual Rewards by Theoretical Optimal SSR

- Define $\hat{r}_i = \hat{C}(X_i) \delta$: a patient with larger \hat{r}_i is more likely to be selected into the subgroup; Sort as $\hat{r}_{(1)} \ge \hat{r}_{(2)} \ge \cdots \ge \hat{r}_{(n)}$;
- Define the cumulative mean as $\widehat{R}_{(i/n)} = \frac{1}{i} \sum_{j=1}^{i} \widehat{r}_{(j)}$.

Asymptotic Results of $\widehat{R}_{(i/n)}$

$$\widehat{R}_{(i/n)} \xrightarrow{p} \quad \mathsf{E}_{Z \in \mathbb{X}}[C(Z)\mathbb{I}\{r_{(\alpha)} \le C(Z) - \delta\}] - \delta \\
= \quad \mathsf{E}_{Z \in \mathbb{X}}\{C(Z)|C(Z) \ge r_{(\alpha)} + \delta\} - \delta,$$

where $r_{(\alpha)} + \delta$ is the upper i/n quantile of the density of C(X) when n goes to infinity.

Rewark: As long as $\widehat{R}_{(i/n)} > 0$, the selected subgroup satisfies the condition in (1) by the theoretical optimal SSR in (4) from Theorem 13.

Define Individual Rewards by Theoretical Optimal SSR

- Define $\hat{r}_i = \hat{C}(X_i) \delta$: a patient with larger \hat{r}_i is more likely to be selected into the subgroup; Sort as $\hat{r}_{(1)} \ge \hat{r}_{(2)} \ge \cdots \ge \hat{r}_{(n)}$;
- Define the cumulative mean as $\widehat{R}_{(i/n)} = \frac{1}{i} \sum_{j=1}^{i} \widehat{r}_{(j)}$.

Asymptotic Results of $\widehat{R}_{(i/n)}$

$$\widehat{R}_{(i/n)} \xrightarrow{p} \quad \mathsf{E}_{Z \in \mathbb{X}} [C(Z) \mathbb{I}\{r_{(\alpha)} \le C(Z) - \delta\}] - \delta$$

$$= \quad \mathsf{E}_{Z \in \mathbb{X}} \{C(Z) | C(Z) \ge r_{(\alpha)} + \delta\} - \delta,$$

where $r_{(\alpha)} + \delta$ is the upper i/n quantile of the density of C(X) when n goes to infinity.

Rewark: As long as $\hat{R}_{(i/n)} > 0$, the selected subgroup satisfies the condition in (1) by the theoretical optimal SSR in (4) from Theorem 13.

Define Individual Rewards by Theoretical Optimal SSR

- Define $\hat{r}_i = \hat{C}(X_i) \delta$: a patient with larger \hat{r}_i is more likely to be selected into the subgroup; Sort as $\hat{r}_{(1)} \ge \hat{r}_{(2)} \ge \cdots \ge \hat{r}_{(n)}$;
- Define the cumulative mean as $\widehat{R}_{(i/n)} = \frac{1}{i} \sum_{j=1}^{i} \widehat{r}_{(j)}$.

Asymptotic Results of $\widehat{R}_{(i/n)}$

$$\widehat{R}_{(i/n)} \xrightarrow{p} \quad \mathsf{E}_{Z \in \mathbb{X}} [C(Z) \mathbb{I}\{r_{(\alpha)} \le C(Z) - \delta\}] - \delta$$

$$= \quad \mathsf{E}_{Z \in \mathbb{X}} \{C(Z) | C(Z) \ge r_{(\alpha)} + \delta\} - \delta,$$

where $r_{(\alpha)}+\delta$ is the upper i/n quantile of the density of C(X) when n goes to infinity.

Rewark: As long as $\widehat{R}_{(i/n)} > 0$, the selected subgroup satisfies the condition in (1) by the theoretical optimal SSR in (4) from Theorem 13.

To select patients with **positive** $\widehat{R}_{(i/n)}$ and maximize the subgroup size, we define the reward of the *i*-th individual based on the **sign** of $\widehat{R}_{(i/n)}$.

Reward 1:

$$\Gamma_i^{(1)}(D) = \mathbb{I}\{D(X_i) = 1\} \left[\operatorname{sign}\{\widehat{R}_{(K_i)}\} \right],$$
(5)

where K_i is the rank of \hat{r}_i in the sequence $\{\hat{r}_{(i)}\}$ or the sequence $\{\hat{R}_{(i/n)}\}$, and 'sign' is the sign operator.

- Given $\widehat{R}_{(K_i)}$ is positive, the reward $\Gamma_i^{(1)}$
 - is 1 if the patient is selected to be part of the subgroup;
 - and is 0 otherwise.
- Suppose $\widehat{R}_{(K_i)}$ is negative, the reward $\Gamma_i^{(1)}$
 - ▶ is −1 if the patient is selected to be in the subgroup;
 - ▶ and is 0 otherwise.
- Thus, we can select patients with $\widehat{R}_{(K_i)}$ larger than zero.

To select patients with **positive** $\widehat{R}_{(i/n)}$ and maximize the subgroup size, we define the reward of the *i*-th individual based on the **sign** of $\widehat{R}_{(i/n)}$.

Reward 1:

$$\Gamma_i^{(1)}(D) = \mathbb{I}\{D(X_i) = 1\}\left[\operatorname{sign}\{\widehat{R}_{(K_i)}\}\right],\tag{5}$$

where K_i is the rank of \hat{r}_i in the sequence $\{\hat{r}_{(i)}\}\)$ or the sequence $\{\hat{R}_{(i/n)}\}\)$, and 'sign' is the sign operator.

- Given $\widehat{R}_{(K_i)}$ is positive, the reward $\Gamma_i^{(1)}$
 - is 1 if the patient is selected to be part of the subgroup;
 - ▶ and is 0 otherwise.
- Suppose $\widehat{R}_{(K_i)}$ is negative, the reward $\Gamma_i^{(1)}$
 - is -1 if the patient is selected to be in the subgroup
 - ▶ and is 0 otherwise.
- Thus, we can select patients with $\widehat{R}_{(K_i)}$ larger than zero.

To select patients with **positive** $\hat{R}_{(i/n)}$ and maximize the subgroup size, we define the reward of the *i*-th individual based on the **sign** of $\hat{R}_{(i/n)}$.

Reward 1:

$$\Gamma_i^{(1)}(D) = \mathbb{I}\{D(X_i) = 1\}\left[\operatorname{sign}\{\widehat{R}_{(K_i)}\}\right],\tag{5}$$

where K_i is the rank of \hat{r}_i in the sequence $\{\hat{r}_{(i)}\}\)$ or the sequence $\{\hat{R}_{(i/n)}\}\)$, and 'sign' is the sign operator.

- Given $\widehat{R}_{(K_i)}$ is positive, the reward $\Gamma_i^{(1)}$
 - is 1 if the patient is selected to be part of the subgroup;
 - and is 0 otherwise.
- Suppose $\widehat{R}_{(K_i)}$ is negative, the reward $\Gamma_i^{(1)}$
 - is -1 if the patient is selected to be in the subgroup
 - and is 0 otherwise.
- Thus, we can select patients with $\widehat{R}_{(K_i)}$ larger than zero.

To select patients with **positive** $\hat{R}_{(i/n)}$ and maximize the subgroup size, we define the reward of the *i*-th individual based on the **sign** of $\hat{R}_{(i/n)}$.

Reward 1:

$$\Gamma_i^{(1)}(D) = \mathbb{I}\{D(X_i) = 1\}\left[\operatorname{sign}\{\widehat{R}_{(K_i)}\}\right],\tag{5}$$

where K_i is the rank of \hat{r}_i in the sequence $\{\hat{r}_{(i)}\}\)$ or the sequence $\{\hat{R}_{(i/n)}\}\)$, and 'sign' is the sign operator.

- Given $\widehat{R}_{(K_i)}$ is positive, the reward $\Gamma_i^{(1)}$
 - is 1 if the patient is selected to be part of the subgroup;
 - and is 0 otherwise.
- Suppose $\widehat{R}_{(K_i)}$ is negative, the reward $\Gamma_i^{(1)}$
 - is -1 if the patient is selected to be in the subgroup;
 - and is 0 otherwise.
- Thus, we can select patients with $R_{(K_i)}$ larger than zero.

To select patients with **positive** $\hat{R}_{(i/n)}$ and maximize the subgroup size, we define the reward of the *i*-th individual based on the **sign** of $\hat{R}_{(i/n)}$.

Reward 1:

$$\Gamma_i^{(1)}(D) = \mathbb{I}\{D(X_i) = 1\}\left[\operatorname{sign}\{\widehat{R}_{(K_i)}\}\right],\tag{5}$$

where K_i is the rank of \hat{r}_i in the sequence $\{\hat{r}_{(i)}\}\)$ or the sequence $\{\hat{R}_{(i/n)}\}\)$, and 'sign' is the sign operator.

- Given $\widehat{R}_{(K_i)}$ is positive, the reward $\Gamma_i^{(1)}$
 - is 1 if the patient is selected to be part of the subgroup;
 - ▶ and is 0 otherwise.
- Suppose $\widehat{R}_{(K_i)}$ is negative, the reward $\Gamma_i^{(1)}$
 - is -1 if the patient is selected to be in the subgroup;
 - and is 0 otherwise.
- Thus, we can select patients with $\widehat{R}_{(K_i)}$ larger than zero.

To include patients who have a **lager treatment effect**, we propose a reward based on the **value** of $\hat{R}_{(K_i)}$ directly.

$$\Gamma_i^{(2)}(D) = \mathbb{I}\{D(X_i) = 1\}\left\{\widehat{R}_{(K_i)}\right\}.$$
(6)

- The optimal SSR is searched within the decision tree class Π_{DT} to maximize the sum of the individual rewards defined in (5) or (6).
- The decision tree <u>allocates</u> each patient to the subgroup or not, and receives the corresponding rewards.
- Use <u>exhaustive search</u> to estimate SSR that optimizes the total reward by R package 'policytree' (Zhou et al. 2018, Athey & Wager 2021).
- The performances are very similar under these two reward choices.

To include patients who have a **lager treatment effect**, we propose a reward based on the **value** of $\hat{R}_{(K_i)}$ directly.

$$\Gamma_i^{(2)}(D) = \mathbb{I}\{D(X_i) = 1\} \left\{ \widehat{R}_{(K_i)} \right\}.$$
 (6)

- The optimal SSR is searched within the decision tree class Π_{DT} to maximize the sum of the individual rewards defined in (5) or (6).
- The decision tree <u>allocates</u> each patient to the subgroup or not, and receives the corresponding rewards.
- Use <u>exhaustive search</u> to estimate SSR that optimizes the total reward by R package 'policytree' (Zhou et al. 2018, Athey & Wager 2021).
- The performances are very similar under these two reward choices.

To include patients who have a **lager treatment effect**, we propose a reward based on the **value** of $\hat{R}_{(K_i)}$ directly.

$$\Gamma_i^{(2)}(D) = \mathbb{I}\{D(X_i) = 1\} \left\{ \widehat{R}_{(K_i)} \right\}.$$
 (6)

- The optimal SSR is searched within the decision tree class Π_{DT} to maximize the sum of the individual rewards defined in (5) or (6).
- The decision tree <u>allocates</u> each patient to the subgroup or not, and receives the corresponding rewards.
- Use <u>exhaustive search</u> to estimate SSR that optimizes the total reward by R package 'policytree' (Zhou et al. 2018, Athey & Wager 2021).
- The performances are very similar under these two reward choices.

To include patients who have a **lager treatment effect**, we propose a reward based on the **value** of $\hat{R}_{(K_i)}$ directly.

$$\Gamma_i^{(2)}(D) = \mathbb{I}\{D(X_i) = 1\} \left\{ \widehat{R}_{(K_i)} \right\}.$$
 (6)

- The optimal SSR is searched within the decision tree class Π_{DT} to maximize the sum of the individual rewards defined in (5) or (6).
- The decision tree <u>allocates</u> each patient to the subgroup or not, and receives the corresponding rewards.
- Use <u>exhaustive search</u> to estimate SSR that optimizes the total reward by R package 'policytree' (Zhou et al. 2018, Athey & Wager 2021).
- The performances are very similar under these two reward choices.

To include patients who have a **lager treatment effect**, we propose a reward based on the **value** of $\hat{R}_{(K_i)}$ directly.

$$\Gamma_i^{(2)}(D) = \mathbb{I}\{D(X_i) = 1\} \left\{ \widehat{R}_{(K_i)} \right\}.$$
 (6)

- The optimal SSR is searched within the decision tree class Π_{DT} to maximize the sum of the individual rewards defined in (5) or (6).
- The decision tree <u>allocates</u> each patient to the subgroup or not, and receives the corresponding rewards.
- Use <u>exhaustive search</u> to estimate SSR that optimizes the total reward by R package 'policytree' (Zhou et al. 2018, Athey & Wager 2021).
- The performances are very similar under these two reward choices.

To include patients who have a **lager treatment effect**, we propose a reward based on the **value** of $\hat{R}_{(K_i)}$ directly.

$$\Gamma_i^{(2)}(D) = \mathbb{I}\{D(X_i) = 1\} \left\{ \widehat{R}_{(K_i)} \right\}.$$
 (6)

- The optimal SSR is searched within the decision tree class Π_{DT} to maximize the sum of the individual rewards defined in (5) or (6).
- The decision tree <u>allocates</u> each patient to the subgroup or not, and receives the corresponding rewards.
- Use <u>exhaustive search</u> to estimate SSR that optimizes the total reward by R package 'policytree' (Zhou et al. 2018, Athey & Wager 2021).
- The performances are very similar under these two reward choices.

Extension to Multiple Constraints

Secondary constraints of interest: the individual treatment effect for each patient should be greater than some minimum beneficial value.

The optimal SSR under multiple constraints

 $\max_{D \in \Pi} \quad \Pr\{D(X) = 1\},\tag{7}$

- s.t. $\mathsf{E}\{Y^*(1)|D(X)=1\} \mathsf{E}\{Y^*(0)|D(X)=1\} \ge \delta > 0,$
- s.t. $\mathsf{E}\{Y^*(1)|D(X) = 1, X = x\} \mathsf{E}\{Y^*(0)|D(X) = 1, X = x\} \ge \gamma, \forall x \in \mathbb{X},$

where γ is a pre-specified <u>minimum beneficial value</u>, such as $\gamma = 0$.

Individual reward under multiple constraints

$$\Gamma_i^{(3)}(D) = \mathbb{I}\{D(X_i) = 1\} \left[\widehat{R}_{(K_i)} + \lambda \mathbb{I}\{\widehat{C}(X_i) < 0\}\widehat{C}(X_i)\right],$$
(8)

where λ is the nonnegative penalty parameter that represents the <u>trade-off</u> between the first and the second constraint.

Extension to Multiple Constraints

Secondary constraints of interest: the individual treatment effect for each patient should be greater than some minimum beneficial value.

The optimal SSR under multiple constraints

$$\max_{D \in \Pi} \quad \mathsf{Pr}\{D(X) = 1\},\tag{7}$$

s.t.
$$\mathsf{E}\{Y^*(1)|D(X)=1\} - \mathsf{E}\{Y^*(0)|D(X)=1\} \ge \delta > 0,$$

s.t.
$$\mathsf{E}\{Y^*(1)|D(X) = 1, X = x\} - \mathsf{E}\{Y^*(0)|D(X) = 1, X = x\} \ge \gamma, \forall x \in \mathbb{X},$$

where γ is a pre-specified <u>minimum beneficial value</u>, such as $\gamma = 0$.

Individual reward under multiple constraints

$$\Gamma_i^{(3)}(D) = \mathbb{I}\{D(X_i) = 1\} \left[\widehat{R}_{(K_i)} + \lambda \mathbb{I}\{\widehat{C}(X_i) < 0\}\widehat{C}(X_i)\right],$$
(8)

where λ is the nonnegative penalty parameter that represents the <u>trade-off</u> between the first and the second constraint.

Extension to Multiple Constraints

Secondary constraints of interest: the individual treatment effect for each patient should be greater than some minimum beneficial value.

The optimal SSR under multiple constraints

$$\max_{D \in \Pi} \quad \mathsf{Pr}\{D(X) = 1\},\tag{7}$$

s.t.
$$\mathsf{E}\{Y^*(1)|D(X)=1\} - \mathsf{E}\{Y^*(0)|D(X)=1\} \ge \delta > 0,$$

s.t.
$$\mathsf{E}\{Y^*(1)|D(X) = 1, X = x\} - \mathsf{E}\{Y^*(0)|D(X) = 1, X = x\} \ge \gamma, \forall x \in \mathbb{X}, \forall x \in \mathbb{X}\}$$

where γ is a pre-specified minimum beneficial value, such as $\gamma = 0$.

Individual reward under multiple constraints

$$\Gamma_i^{(3)}(D) = \mathbb{I}\{D(X_i) = 1\} \left[\widehat{R}_{(K_i)} + \lambda \mathbb{I}\{\widehat{C}(X_i) < 0\}\widehat{C}(X_i)\right],$$
(8)

where λ is the nonnegative penalty parameter that represents the <u>trade-off</u> between the first and the second constraint.

Let T_i and C_i denote the survival time and the censoring time.

The optimal SSR for a survival endpoint

$$\max_{D \in \Pi} \quad \mathsf{EI}\{D(X) = 1\},$$

s.t. $\mathsf{E}\{\min(T,L)|D(X) = 1, A = 1\} - \mathsf{E}\{\min(T,L)|D(X) = 1, A = 0\} \ge \delta,$

- Let $\mu_0(X) = \int_0^L S(t|A=0)dt$ and $\mu_1(X) = \int_0^L S(t|A=1)dt$: restricted mean survival time for groups with treatment 0 and 1, where S(t|A=0) and S(t|A=1) are survival functions.
- Denote $\hat{r}_i = \hat{\mu}_1(X_i) \hat{\mu}_0(X_i) \delta$ to capture the <u>distance</u> from the estimated contrast function to the desired difference in restricted mean survival time δ for the *i*-th individual.
- Define individual rewards for survival data similarly as in (5) and (6).

Let T_i and C_i denote the survival time and the censoring time.

The optimal SSR for a survival endpoint

$$\max_{D \in \Pi} \quad \mathsf{EI}\{D(X) = 1\},$$

s.t. $\mathsf{E}\{\min(T,L)|D(X) = 1, A = 1\} - \mathsf{E}\{\min(T,L)|D(X) = 1, A = 0\} \ge \delta,$

where L is the maximum follow up time.

- Let $\mu_0(X) = \int_0^L S(t|A=0)dt$ and $\mu_1(X) = \int_0^L S(t|A=1)dt$: restricted mean survival time for groups with treatment 0 and 1, where S(t|A=0) and S(t|A=1) are survival functions.
- Denote $\hat{r}_i = \hat{\mu}_1(X_i) \hat{\mu}_0(X_i) \delta$ to capture the distance from the estimated contrast function to the desired difference in restricted mean survival time δ for the *i*-th individual.
- Define individual rewards for survival data similarly as in (5) and (6).

(9)

Let T_i and C_i denote the survival time and the censoring time.

The optimal SSR for a survival endpoint

$$\max_{D \in \Pi} \quad \mathsf{EI}\{D(X) = 1\},\tag{9}$$

s.t. $\mathsf{E}\{\min(T,L)|D(X) = 1, A = 1\} - \mathsf{E}\{\min(T,L)|D(X) = 1, A = 0\} \ge \delta,$

- Let $\mu_0(X) = \int_0^L S(t|A=0)dt$ and $\mu_1(X) = \int_0^L S(t|A=1)dt$: restricted mean survival time for groups with treatment 0 and 1, where S(t|A=0) and S(t|A=1) are survival functions.
- Denote $\hat{r}_i = \hat{\mu}_1(X_i) \hat{\mu}_0(X_i) \delta$ to capture the <u>distance</u> from the estimated contrast function to the desired difference in restricted mean survival time δ for the *i*-th individual.
- Define individual rewards for survival data similarly as in (5) and (6).

Let T_i and C_i denote the survival time and the censoring time.

The optimal SSR for a survival endpoint

$$\max_{D \in \Pi} \quad \mathsf{EI}\{D(X) = 1\},\tag{9}$$

s.t. $\mathsf{E}\{\min(T,L)|D(X) = 1, A = 1\} - \mathsf{E}\{\min(T,L)|D(X) = 1, A = 0\} \ge \delta$,

- Let $\mu_0(X) = \int_0^L S(t|A=0)dt$ and $\mu_1(X) = \int_0^L S(t|A=1)dt$: restricted mean survival time for groups with treatment 0 and 1, where S(t|A=0) and S(t|A=1) are survival functions.
- Denote $\hat{r}_i = \hat{\mu}_1(X_i) \hat{\mu}_0(X_i) \delta$ to capture the <u>distance</u> from the estimated contrast function to the desired difference in restricted mean survival time δ for the *i*-th individual.
- Define individual rewards for survival data similarly as in (5) and (6).

Let T_i and C_i denote the survival time and the censoring time.

The optimal SSR for a survival endpoint

$$\max_{D \in \Pi} \quad \mathsf{EI}\{D(X) = 1\},\tag{9}$$

s.t. $\mathsf{E}\{\min(T,L)|D(X) = 1, A = 1\} - \mathsf{E}\{\min(T,L)|D(X) = 1, A = 0\} \ge \delta,$

- Let $\mu_0(X) = \int_0^L S(t|A=0)dt$ and $\mu_1(X) = \int_0^L S(t|A=1)dt$: restricted mean survival time for groups with treatment 0 and 1, where S(t|A=0) and S(t|A=1) are survival functions.
- Denote $\hat{r}_i = \hat{\mu}_1(X_i) \hat{\mu}_0(X_i) \delta$ to capture the <u>distance</u> from the estimated contrast function to the desired difference in restricted mean survival time δ for the *i*-th individual.
- Define individual rewards for survival data similarly as in (5) and (6).

Simulations

Settings

 $A \stackrel{iid}{\sim} \text{Bernoulli}\{0.5\}, \quad X^{(1)}, \cdots, X^{(r)} \stackrel{iid}{\sim} \text{Uniform}[-2, 2], \quad (10)$ $Y = U(X) + AC(X) + \epsilon,$

where $U(\cdot)$ is the baseline function of the outcome and $\epsilon \stackrel{iid}{\sim} N(0,1)$. Set the dimension of covariates as r = 10 and consider

• Scenario 1

$$\begin{cases} U(X) = X^{(1)} + 2X^{(2)}, \\ C(X) = X^{(1)}. \end{cases}$$

Scenario 2

$$\left\{ \begin{array}{l} U(X) = X^{(1)} + 2X^{(2)}, \\ C(X) = X^{(1)} \times X^{(2)}. \end{array} \right.$$

Results for Single Replicate under CAPITAL

Setting: Scenario 2 with $\delta = 1.0$ using reward in (6) for n = 1000.

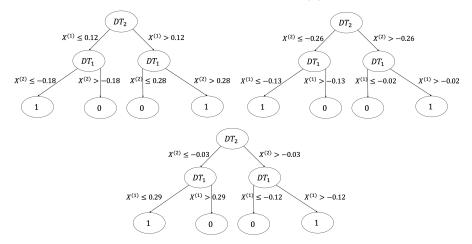


Figure 3: Upper left panel: for replicate No.1. Upper right Panel: for replicate No.2. Lower middle Panel: for replicate No.3. Optimal SSR: $\mathbb{I}\{X^{(1)}X^{(2)} > 0\}$.

Results for Single Replicate under CAPITAL

Table 3: Results for three particular replicates under Scenario 2 with $\delta = 1.0$ and n = 1000 (where the optimal subgroup sample proportion is 50%).

Simulation	Replicate No.1	Replicate No.2	Replicate No.3
$Pr\{\widehat{D}(X)\}$	44.5%	49.2%	55.0%
$ATE(\widehat{D})$	1.11	1.00	0.90
RCD	91.85%	92.01%	94.45%
DT ₂ Split Variable (Split Value)	$X^{(1)}(0.12)$	$X^{(2)}(-0.26)$	$X^{(2)}(-0.03)$
$DT_1(Left)$ Split Variable (Split Value)	$X^{(2)}(-0.18)$	$X^{(1)}(-0.13)$	$X^{(1)}(0.29)$
$DT_1(Right)$ Split Variable (Split Value)	$X^{(2)}(0.28)$	$X^{(1)}(-0.02)$	$X^{(1)}(-0.12)$

- Selected sample proportion under estimated SSR: $\Pr{\{\widehat{D}(X)\}};$
- ATE of estimated SSR: $ATE(\widehat{D})$;
- Rate of making correct subgroup decisions by estimated SSR: RCD.

Visualization Selected Subgroup under CAPITAL

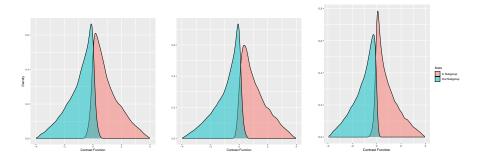


Figure 4: The density function of C(X) within or outside the subgroup under Scenario 2 with $\delta = 1.0$ and n = 1000. Left panel: for replicate No.1. Middle Panel: for replicate No.2. Right Panel: for replicate No.3.

Comparison Studies between CAPITAL and VT

Method		r = 10		Scenario 1			Scenario 2	
		-	n = 200	n = 500	n = 1000	n = 200	n = 500	n = 1000
CAPITAL	$\delta = 0.7$	Proportion		65%			67%	
		$Pr\{\widehat{D}(X)\}$	0.62(0.16)	0.63(0.08)	0.65(0.05)	0.42(0.23)	0.51(0.11)	0.56(0.05)
		$ATE(\hat{D})$	0.66(0.28)	0.72(0.17)	0.69(0.10)	0.72(0.47)	0.96(0.20)	0.86(0.11)
		RCD	0.83(0.10)	0.91(0.05)	0.93(0.03)	0.62(0.15)	0.81(0.08)	0.87(0.03)
	$\delta = 1.0$	Proportion		50%			50%	
		$Pr\{\widehat{D}(X)\}$	0.46(0.16)	0.48(0.09)	0.50(0.06)	0.21(0.17)	0.32(0.12)	0.40(0.06)
		$ATE(\hat{D})$	0.90(0.27)	1.00(0.15)	0.99(0.11)	0.83(0.63)	1.31(0.27)	1.17(0.11)
		RCD	0.84(0.11)	0.91(0.05)	0.94(0.03)	0.62(0.12)	0.79(0.11)	0.88(0.05)
VT	$\delta = 0.7$	Proportion		65%			67%	
		$Pr\{\widehat{D}(X)\}$	0.31(0.12)	0.34(0.09)	0.35(0.08)	0.15(0.10)	0.19(0.09)	0.22(0.08)
		$ATE(\hat{D})$	1.11(0.20)	1.27(0.17)	1.30(0.15)	0.85(0.61)	1.46(0.38)	1.53(0.32)
		RCD	0.66(0.12)	0.69(0.09)	0.70(0.08)	0.43(0.08)	0.51(0.09)	0.55(0.09)
	$\delta = 1.0$	Proportion		50%			50%	
		$Pr\{\widehat{D}(X)\}$	0.21(0.13)	0.24(0.10)	0.26(0.07)	0.07(0.06)	0.09(0.07)	0.14(0.07)
		$ATE(\hat{D})$	1.19(0.21)	1.37(0.18)	1.45(0.13)	1.01(0.74)	1.67(0.49)	1.78(0.38)
		RCD	0.70(0.12)	0.74(0.10)	0.76(0.07)	0.54(0.06)	0.59(0.07)	0.64(0.07)

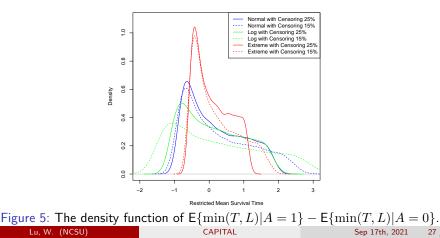
Evaluation of Multiple Constraints

	r = 10		Scenario 1			Scenario 2	
		n = 200	n = 500	n = 1000	n = 200	n = 500	n = 1000
$\delta = 0.7$	Proportion		65%			67%	
$\lambda = 0$	$Pr\{\widehat{D}(X)\}$	0.63(0.16)	0.63(0.08)	0.65(0.05)	0.44(0.24)	0.51(0.11)	0.57(0.06)
	$ATE(\hat{D})$	0.67(0.30)	0.72(0.17)	0.70(0.11)	0.71(0.48)	0.95(0.20)	0.85(0.11)
	RCD	0.84(0.10)	0.91(0.05)	0.93(0.03)	0.62(0.15)	0.81(0.08)	0.87(0.03)
	RPI	0.78(0.13)	0.80(0.09)	0.78(0.06)	0.74(0.16)	0.88(0.09)	0.85(0.07)
$\lambda = 0.5$	$Pr\{\widehat{D}(X)\}$	0.55(0.12)	0.56(0.06)	0.57(0.04)	0.39(0.21)	0.48(0.10)	0.53(0.05)
	$ATE(\hat{D})$	0.83(0.23)	0.86(0.11)	0.86(0.08)	0.77(0.48)	1.01(0.17)	0.93(0.10)
	RCD	0.84(0.09)	0.90(0.05)	0.91(0.03)	0.61(0.15)	0.79(0.08)	0.85(0.04)
	RPI	0.86(0.11)	0.88(0.07)	0.88(0.05)	0.76(0.15)	0.91(0.07)	0.90(0.05)
$\lambda = 1$	$Pr\{\widehat{D}(X)\}$	0.52(0.11)	0.54(0.05)	0.54(0.04)	0.37(0.20)	0.46(0.09)	0.51(0.05)
	$ATE(\hat{D})$	0.88(0.20)	0.91(0.11)	0.91(0.07)	0.79(0.48)	1.05(0.16)	0.97(0.10)
	RCD	0.83(0.09)	0.88(0.05)	0.89(0.04)	0.60(0.15)	0.78(0.08)	0.83(0.05)
	RPI	0.88(0.09)	0.90(0.06)	0.91(0.05)	0.77(0.15)	0.92(0.06)	0.92(0.05)

 \bullet Rate of positive individual treatment effect within the selected subgroup: RPI.

Settings for Survival Data

Define the survival time as $T = \exp(Y)$. Set noises ϵ for Y as: (i) normal: $\epsilon \stackrel{iid}{\sim} N(0,1)$; (ii) logistic: $\epsilon \stackrel{iid}{\sim}$ logistic(0,1); (iii) extreme: $\epsilon \stackrel{iid}{\sim} \log[-\log\{\text{Uniform}(0,1)\}]$; and censoring levels as 15% and 25%. Scenario 3: $U(X) = 0.1X^{(1)} + 0.2X^{(2)}, C(X) = X^{(1)}$.



27 / 36

Evaluation of Survival Data

Table 4: Empirical results of CAPITAL for the survival data under Scenario 3 (where the optimal subgroup sample proportion is 50%).

		Censoring Level 15%		Censoring Level 25%	
		n = 500	n = 1000	n = 500	n = 1000
Case 1 (normal)	True δ	1.	07	0.86	
	$Pr\{\widehat{D}(X)\}$	0.45(0.17)	0.47(0.12)	0.46(0.16)	0.48(0.11)
	$ATE(\hat{D})$	1.07(0.31)	1.11(0.24)	0.87(0.22)	0.87(0.16)
	RCD	0.84(0.11)	0.88(0.07)	0.84(0.09)	0.90(0.06)
Case 2 (logistic)	True δ	1.34		0.87	
	$Pr\{\widehat{D}(X)\}$	0.57(0.26)	0.56(0.18)	0.52(0.24)	0.52(0.18)
	$ATE(\hat{D})$	0.94(0.49)	1.06(0.36)	0.63(0.31)	0.75(0.24)
	RCD	0.72(0.13)	0.80(0.10)	0.74(0.13)	0.82(0.09)
Case 3 (extreme)	True δ	0.73		0.54	
	$Pr\{\widehat{D}(X)\}$	0.44(0.18)	0.46(0.12)	0.41(0.18)	0.44(0.12)
	$ATE(\hat{D})$	0.76(0.21)	0.78(0.15)	0.57(0.15)	0.58(0.11)
	RCD	0.84(0.11)	0.89(0.08)	0.83(0.12)	0.88(0.08)

Application

- There are 1046 HIV-infected subjects enrolled in ACTG 175 data;
- <u>12 Covariates X</u>:
 - 1) four continuous variables: age (years), weight (kg), CD4 count (cells/mm3) at baseline, and CD8 count (cells/mm3) at baseline;
 - 2) eight categorical variables: hemophilia (0=no), homosexual activity (0=no), intravenous drug use (0=no), Karnofsky score (4 levels as 70, 80, 90, and 100), race (0=white), gender (0=female), antiretroviral history (0=naive), and symptomatic status (0=asymptomatic).
- Binary Treatment A: zidovudine (ZDV) + zalcitabine (ddC) as treatment 0, and ZDV+didanosine (ddl) as treatment 1;
 - ▶ 524 patients randomized to treatment 0 and 522 patients to treatment 1, with constant propensity score $\pi(x) \equiv 0.499$.
- <u>Outcome of interest Y</u>: the mean CD4 count (cells/mm3) at 20 ± 5 weeks. We normalize Y by its mean and standard deviation.
- <u>Goal</u>: find the optimal SSR that optimizes the size of the selected subgroup and achieves the desired ATE.

- There are 1046 HIV-infected subjects enrolled in ACTG 175 data;
- <u>12 Covariates X</u>:
 - 1) four continuous variables: age (years), weight (kg), CD4 count (cells/mm3) at baseline, and CD8 count (cells/mm3) at baseline;
 - 2) eight categorical variables: hemophilia (0=no), homosexual activity (0=no), intravenous drug use (0=no), Karnofsky score (4 levels as 70, 80, 90, and 100), race (0=white), gender (0=female), antiretroviral history (0=naive), and symptomatic status (0=asymptomatic).
- Binary Treatment A: zidovudine (ZDV) + zalcitabine (ddC) as treatment 0, and ZDV+didanosine (ddl) as treatment 1;
 - ▶ 524 patients randomized to treatment 0 and 522 patients to treatment 1, with constant propensity score $\pi(x) \equiv 0.499$.
- <u>Outcome of interest Y</u>: the mean CD4 count (cells/mm3) at 20 ± 5 weeks. We normalize Y by its mean and standard deviation.
- <u>Goal</u>: find the optimal SSR that optimizes the size of the selected subgroup and achieves the desired ATE.

- There are 1046 HIV-infected subjects enrolled in ACTG 175 data;
- <u>12 Covariates X</u>:
 - ▶ 1) four continuous variables: age (years), weight (kg), CD4 count (cells/mm3) at baseline, and CD8 count (cells/mm3) at baseline;
 - 2) eight categorical variables: hemophilia (0=no), homosexual activity (0=no), intravenous drug use (0=no), Karnofsky score (4 levels as 70, 80, 90, and 100), race (0=white), gender (0=female), antiretroviral history (0=naive), and symptomatic status (0=asymptomatic).
- Binary Treatment A: zidovudine (ZDV) + zalcitabine (ddC) as treatment 0, and ZDV+didanosine (ddl) as treatment 1;
 - ► 524 patients randomized to treatment 0 and 522 patients to treatment 1, with constant propensity score $\pi(x) \equiv 0.499$.
- <u>Outcome of interest Y</u>: the mean CD4 count (cells/mm3) at 20 ± 5 weeks. We normalize Y by its mean and standard deviation.
- <u>Goal</u>: find the optimal SSR that optimizes the size of the selected subgroup and achieves the desired ATE.

- There are 1046 HIV-infected subjects enrolled in ACTG 175 data;
- <u>12 Covariates X</u>:
 - ▶ 1) four continuous variables: age (years), weight (kg), CD4 count (cells/mm3) at baseline, and CD8 count (cells/mm3) at baseline;
 - 2) eight categorical variables: hemophilia (0=no), homosexual activity (0=no), intravenous drug use (0=no), Karnofsky score (4 levels as 70, 80, 90, and 100), race (0=white), gender (0=female), antiretroviral history (0=naive), and symptomatic status (0=asymptomatic).
- Binary Treatment A: zidovudine (ZDV) + zalcitabine (ddC) as treatment 0, and ZDV+didanosine (ddl) as treatment 1;
 - ► 524 patients randomized to treatment 0 and 522 patients to treatment 1, with constant propensity score $\pi(x) \equiv 0.499$.
- <u>Outcome of interest Y:</u> the mean CD4 count (cells/mm3) at 20 ± 5 weeks. We normalize Y by its mean and standard deviation.
- <u>Goal</u>: find the optimal SSR that optimizes the size of the selected subgroup and achieves the desired ATE.

- There are 1046 HIV-infected subjects enrolled in ACTG 175 data;
- <u>12 Covariates X</u>:
 - ▶ 1) four continuous variables: age (years), weight (kg), CD4 count (cells/mm3) at baseline, and CD8 count (cells/mm3) at baseline;
 - 2) eight categorical variables: hemophilia (0=no), homosexual activity (0=no), intravenous drug use (0=no), Karnofsky score (4 levels as 70, 80, 90, and 100), race (0=white), gender (0=female), antiretroviral history (0=naive), and symptomatic status (0=asymptomatic).
- Binary Treatment A: zidovudine (ZDV) + zalcitabine (ddC) as treatment 0, and ZDV+didanosine (ddl) as treatment 1;
 - ► 524 patients randomized to treatment 0 and 522 patients to treatment 1, with constant propensity score $\pi(x) \equiv 0.499$.
- Outcome of interest Y: the mean CD4 count (cells/mm3) at 20 \pm 5 weeks. We normalize Y by its mean and standard deviation.
- <u>Goal</u>: find the optimal SSR that optimizes the size of the selected subgroup and achieves the desired ATE.

Data Analysis II: Estimated Contrast Function

- Clinically meaningful ATEs: $\delta = 0.35$ and 0.45 (cells/mm3);
- Corresponding optimal subgroup sample proportions: 72% and 50%.
- Randomly split the whole data, with 70% as a training sample to find the SSR and 30% as a testing sample to evaluate its performance.
- Difference of the ATE within the subgroup and outside the subgroup: $ATE(\widehat{D}) ATE(\widehat{D}^c).$

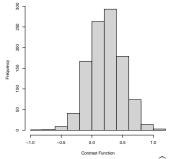


Figure 6: The density of the estimated contrast $\widehat{C}(X)$ for the ACTG 175.

Results for ACTG 175 data I: CAPITAL vs VT

	Desired Effect (Optimal Proportion)	$\delta = 0.35(72\%) \delta = 0.45(50\%)$
CAPITAL	$Pr\{\widehat{D}(X)\}$	92.8% (0.023) 57.4% (0.061)
with $\lambda=0$	$ATE(\widehat{D})$	0.250 (0.015) 0.313 (0.023)
	$ATE(\widehat{D}) - ATE(\widehat{D}^c)$	0.357 (0.068) 0.205 (0.025)
	RPI	83.0% (0.021) 89.2% (0.028)
CAPITAL	$Pr\{\widehat{D}(X)\}$	73.4% (0.094) 40.3% (0.046)
with $\lambda=2$	$ATE(\widehat{D})$	0.282 (0.023) 0.366 (0.025)
	$ATE(\widehat{D}) - ATE(\widehat{D}^c)$	0.222 (0.038) 0.235 (0.028)
	RPI	86.1% (0.029) 95.0% (0.024)
CAPITAL	$Pr\{\widehat{D}(X)\}$	35.6% (0.035) 32.1% (0.043)
with $\lambda=20$	$ATE(\widehat{D})$	0.381 (0.021) 0.391 (0.023)
	$ATE(\widehat{D}) - ATE(\widehat{D}^c)$	0.242 (0.025) 0.244 (0.026)
	RPI	95.9% (0.017) 96.5% (0.017)
Virtual Twins	$Pr\{\widehat{D}(X)\}$	22.1% (0.063) 10.5% (0.029)
	$ATE(\widehat{D})$	0.462 (0.043) 0.556 (0.050)
	$ATE(\widehat{D}) - ATE(\widehat{D}^c)$	0.302 (0.037) 0.368 (0.047)
	RPI	97.8% (0.019) 99.6% (0.010)

Results for ACTG 175 data II: Visualization for the Estimated SSR

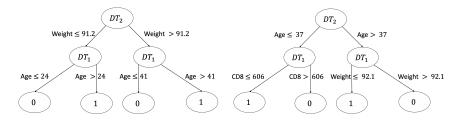


Figure 7: The estimated optimal SSR using CAPITAL under the ACTG 175 data. Left panel: for $\delta = 0.35$ (cells/mm3). Right Panel: for $\delta = 0.45$ (cells/mm3).

• There are 599 patients enrolled. Exclude 7 with missing records.

• <u>14 Covariates X</u>:

- 1) 12 categorical variables: gender (1=Male), race (1= Asian, 2=Black, 3=White), Cytogenetic markers 1 through 9 (0=Absent), patient's prior therapy (1=Failure, 2=Progression, 3=Relapse);
- 2). 2 ordinal variables: Cytogenetic category (1=Very good, 2=Good, 3 =Intermediate, 4=Poor, 5=Very poor), and prognostic score for myelodysplastic syndromes risk assessment (IPSS) (1=Low, 2=Intermediate, 3=High, 4=Very high).
- Binary treatment A: the experimental therapy plus best supporting care as treatment 1, and the best supporting care as treatment 0.
 - ▶ 301 patients receiving treatment 1 and 291 receiving treatment 0.
- <u>Outcome of interest Y:</u> overall survival time (days).
- <u>Goal:</u> find the optimal SSR that maximizes the size of the selected group while achieving the desired ATE in the survival data.

- There are 599 patients enrolled. Exclude 7 with missing records.
- <u>14 Covariates X</u>:
 - ▶ 1) 12 categorical variables: gender (1=Male), race (1= Asian, 2=Black, 3=White), Cytogenetic markers 1 through 9 (0=Absent), patient's prior therapy (1=Failure, 2=Progression, 3=Relapse);
 - 2). 2 ordinal variables: Cytogenetic category (1=Very good, 2=Good, 3 =Intermediate, 4=Poor, 5=Very poor), and prognostic score for myelodysplastic syndromes risk assessment (IPSS) (1=Low, 2=Intermediate, 3=High, 4=Very high).
- Binary treatment A: the experimental therapy plus best supporting care as treatment 1, and the best supporting care as treatment 0.
 301 patients receiving treatment 1 and 291 receiving treatment 0.
- <u>Outcome of interest Y:</u> overall survival time (days).
- <u>Goal</u>: find the optimal SSR that maximizes the size of the selected group while achieving the desired ATE in the survival data.

- There are 599 patients enrolled. Exclude 7 with missing records.
- <u>14 Covariates X</u>:
 - ▶ 1) 12 categorical variables: gender (1=Male), race (1= Asian, 2=Black, 3=White), Cytogenetic markers 1 through 9 (0=Absent), patient's prior therapy (1=Failure, 2=Progression, 3=Relapse);
 - 2). 2 ordinal variables: Cytogenetic category (1=Very good, 2=Good, 3 =Intermediate, 4=Poor, 5=Very poor), and prognostic score for myelodysplastic syndromes risk assessment (IPSS) (1=Low, 2=Intermediate, 3=High, 4=Very high).
- Binary treatment A: the experimental therapy plus best supporting care as treatment 1, and the best supporting care as treatment 0.
 - ▶ 301 patients receiving treatment 1 and 291 receiving treatment 0.
- <u>Outcome of interest Y</u>: overall survival time (days).
- <u>Goal</u>: find the optimal SSR that maximizes the size of the selected group while achieving the desired ATE in the survival data.

- There are 599 patients enrolled. Exclude 7 with missing records.
- <u>14 Covariates X</u>:
 - ▶ 1) 12 categorical variables: gender (1=Male), race (1= Asian, 2=Black, 3=White), Cytogenetic markers 1 through 9 (0=Absent), patient's prior therapy (1=Failure, 2=Progression, 3=Relapse);
 - 2). 2 ordinal variables: Cytogenetic category (1=Very good, 2=Good, 3 =Intermediate, 4=Poor, 5=Very poor), and prognostic score for myelodysplastic syndromes risk assessment (IPSS) (1=Low, 2=Intermediate, 3=High, 4=Very high).
- Binary treatment A: the experimental therapy plus best supporting care as treatment 1, and the best supporting care as treatment 0.
 - ▶ 301 patients receiving treatment 1 and 291 receiving treatment 0.
- <u>Outcome of interest Y:</u> overall survival time (days).
- <u>Goal</u>: find the optimal SSR that maximizes the size of the selected group while achieving the desired ATE in the survival data.

- There are 599 patients enrolled. Exclude 7 with missing records.
- <u>14 Covariates X</u>:
 - ▶ 1) 12 categorical variables: gender (1=Male), race (1= Asian, 2=Black, 3=White), Cytogenetic markers 1 through 9 (0=Absent), patient's prior therapy (1=Failure, 2=Progression, 3=Relapse);
 - 2). 2 ordinal variables: Cytogenetic category (1=Very good, 2=Good, 3 =Intermediate, 4=Poor, 5=Very poor), and prognostic score for myelodysplastic syndromes risk assessment (IPSS) (1=Low, 2=Intermediate, 3=High, 4=Very high).
- Binary treatment A: the experimental therapy plus best supporting care as treatment 1, and the best supporting care as treatment 0.
 - ▶ 301 patients receiving treatment 1 and 291 receiving treatment 0.
- <u>Outcome of interest Y:</u> overall survival time (days).
- <u>Goal:</u> find the optimal SSR that maximizes the size of the selected group while achieving the desired ATE in the survival data.

Data Analysis II: Estimated Contrast Function

- Clinically meaningful ATEs: $\delta = 84$ and 108 (days);
- Corresponding optimal subgroup sample proportions: 72% and 51%.

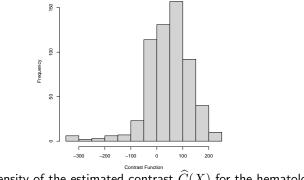


Figure 8: The density of the estimated contrast $\widehat{C}(X)$ for the hematological malignancies data.

Results for Hematological Data I: CAPITAL vs VT

	Desired Effect (Optimal Proportion)	$\delta = 84(72\%)$	$\delta = 108(51\%)$
CAPITAL	$Pr\{\widehat{D}(X)\}$	76.7% (0.030)	49.5% (0.061)
with $\lambda=0$	$ATE(\widehat{D})$	71.6 (5.2)	85.2 (10.6)
	$ATE(\widehat{D}) - ATE(\widehat{D}^c)$	117.9 (12.7)	80.8 (12.5)
	RPI	88.4% (0.030)	92.2% (0.029)
CAPITAL	$Pr\{\widehat{D}(X)\}$	75.1% (0.030)	40.0% (0.063)
with $\lambda=0.01$	$ATE(\widehat{D})$	72.3 (4.8)	102.3 (11.3)
	$ATE(\widehat{D}) - ATE(\widehat{D}^c)$	113.5 (12.3)	96.3 (12.4)
	RPI	88.8% (0.027)	95.4% (0.031)
CAPITAL	$Pr\{\widehat{D}(X)\}$	74.1% (0.031)	36.7% (0.063)
with $\lambda=0.02$	$ATE(\widehat{D})$	72.9 (4.7)	106.7 (10.7)
	$ATE(\hat{D}) - ATE(\hat{D}^c)$	111.2 (12.4)	98.5 (10.6)
	RPI	88.9% (0.026)	96.3% (0.029)
Virtual Twins	$Pr\{\widehat{D}(X)\}$	38.1% (0.043)	12.9% (0.117)
	$ATE(\widehat{D})$	113.8 (6.2)	151.4 (29.2)
	$ATE(\widehat{D}) - ATE(\widehat{D}^c)$	112.4 (7.9)	121.7 (21.4)
	RPI	99.5% (0.010)	99.9% (0.003)

Results for Hematological Data II: Visualization for the Estimated SSR

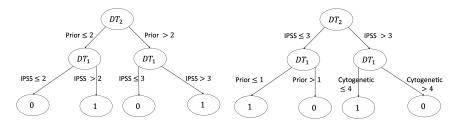


Figure 9: The estimated optimal SSR using CAPITAL under the hematological malignancies data. Left panel: for $\delta = 84$ (days). Right Panel: for $\delta = 108$ (days).

Coauthors:

- Hengrui Cai (student at NC State),
- Rachel Marceau (Merck),
- Devan Mehrotra (Merck),
- Lingkang Huang (Merck).

Thank You!

- Athey, S. & Wager, S. (2021), 'Policy learning with observational data', *Econometrica* **89**(1), 133–161.
- Cai, T., Tian, L., Wong, P. H. & Wei, L. (2011), 'Analysis of randomized comparative clinical trial data for personalized treatment selections', *Biostatistics* 12(2), 270–282.
- Foster, J. C., Taylor, J. M. & Ruberg, S. J. (2011), 'Subgroup identification from randomized clinical trial data', *Statistics in medicine* **30**(24), 2867–2880.
- Lipkovich, I., Dmitrienko, A. & B D'Agostino Sr, R. (2017), 'Tutorial in biostatistics: data-driven subgroup identification and analysis in clinical trials', *Statistics in medicine* **36**(1), 136–196.
- Song, X. & Pepe, M. S. (2004), 'Evaluating markers for selecting a patient's treatment', *Biometrics* **60**(4), 874–883.
- Wang, Y., Fu, H. & Zeng, D. (2018), 'Learning optimal personalized treatment rules in consideration of benefit and risk: with an application to treating type 2 diabetes patients with insulin therapies', *Journal of the American Statistical Association* **113**(521), 1–13.

- Zhou, J., Zhang, J., Lu, W. & Li, X. (2021), 'On restricted optimal treatment regime estimation for competing risks data', *Biostatistics* 22(2), 217–232.
- Zhou, Z., Athey, S. & Wager, S. (2018), 'Offline multi-action policy learning: Generalization and optimization', *arXiv preprint arXiv:1810.04778*.